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Abstract. As an excellent semi-supervised learning paradigm, co-training usually needs
at least two sufficient and redundant views on the training datasets, which is fulfilled by
few training datasets. Besides, most co-training algorithms frequently face with the in-
troduction of noisy labels, which is harmful to the efficiency of co-training. To decrease
these problems, in this paper, we increase co-training algorithm with prediction confi-
dence of neighboring unlabeled samples, Increase-CoTrain in short. On one hand, to
avoid the sufficient and redundant views in co-training, we introduce entropy-based divi-
sion of views into Increase-CoTrain. On the other hand, to alleviate the introduction of
noisy labels in co-training, we define a strategy of comparing the prediction confidence
with its nearest neighbor unlabeled samples when labeling an unlabeled sample. Experi-
ments on several UCI datasets demonstrate the efficiency of Increase-CoTrain.
Keywords: Co-training, Noisy labels, Prediction confidence of nearest neighbor unla-
beled samples, Entropy-based division of views

1. Introduction. Semi-supervised learning [1], which uses both labeled samples and
unlabeled samples to train and strengthen classifiers, is one of the hottest topics in machine
learning. Co-training [2] is an excellent semi-supervised learning paradigm. In 1997, Blum
and Mitchell first put forward the original co-training algorithm. Generally speaking, the
process of co-training is as follows: Co-training algorithm generates two classifiers on two
sufficient and redundant views of samples. In each iteration, a classifier gives samples
which have the highest labeling confidence to the other classifier; the latter refines itself
with the expanding labeled samples and gives samples which have the highest prediction
confidence to its collaborative classifier. Co-training algorithm stops after reaching the
termination conditions.

Co-training can make full use of quantities of unlabeled samples and build classifiers
with high classification accuracy. Especially on two sufficient and redundant views of
training datasets, co-training can construct efficient classifiers with a few labeled samples
and abundant unlabeled samples. However, there are few training datasets who have at
least two sufficient and redundant views, which makes original co-training is not applicable
to real-world scenes. To solve this problem, many researchers have worked out their
solutions. Goldman and Zhou [3] improved original co-training, in which two classifiers
are built on the single view of training dataset by using two different decision trees.
Zhou and Li [4] proposed the famous tri-training algorithm. Tri-training does not require
sufficient and redundant views, by using bootstrap sampling three times, this algorithm
develops three sample subsets from the original labeled sample set, and then, tri-training
trains three basic classifiers from these sample subsets. Wang et al. [5] presented a co-
training algorithm based on random subspace of training samples, which trains classifiers
on different random subspace of attributes of samples.
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The introduction of noisy labels is another serious problem for co-training. Because
of the small number of labeled samples in co-training, especially in the initial stages,
basic classifiers built on these labeled samples are too weak to classify unlabeled samples
correctly, which may label unlabeled samples incorrectly and bring in noisy labels for
co-training. To minimize this issue, pools of criteria are carried out. Among them,
calculating the prediction confidence and bringing the unlabeled samples with the highest
prediction confidence to the main classifier in co-training is the most popular strategy.
Zhou and Li [4] firstly evaluated the prediction confidence of unlabeled samples with
voting by the auxiliary classifiers. Zhang et al. [6] drew a conclusion on methods of
prediction confidence in co-training. Zou et al. [7] defined a novel formula to calculate
the prediction confidence.

Above all, solutions to the problem of inexistence of sufficient and redundant views
do not always work well, while methods of preventing from the introduction of noisy
labels limit the improvement of co-training. To lessen the introduction of noisy labels and
increase the efficiency of co-training, in this paper, we combine co-training with prediction
confidence of nearest neighbor unlabeled samples and put forward a co-training algorithm,
Increase-CoTrain in short. Increase-CoTrain builds two classifiers on two views of training
samples. The two views are generated by entropy-based division. In each iteration of
Increase-CoTrain, one classifier is selected as the main classifier while the other one is
regarded as the auxiliary classifier in return. The auxiliary classifier labels unlabeled
samples for the main classifier. Concretely, those unlabeled samples, which not only have
the highest prediction confidence but also have small difference of the prediction confidence
of its nearest neighbor unlabeled samples, are labeled by the auxiliary classifier and used
to the reinforcement learning of the main classifier.

The rest of this paper is organized as follows. Section 2 detailedly depicts the entropy-
based division of views and the measure of calculating the prediction confidence of un-
labeled samples and the difference of the prediction confidence between them and their
nearest neighbor unlabeled samples. Then, Section 3 defines the process of Increase-
CoTrain. After that, Section 4 shows the experiments and Section 5 draws a conclusion
of this paper.

2. Research Methods.

2.1. Entropy-based division of views. To solve the problem that there are not suf-
ficient and redundant views of training data in co-training, Du et al. [8] proposed the
method of entropy-based divisions of views. The method at first calculates the entropy of
each attribute of the training data, and then, sorts all the attributes in descending order
of the value of their entropy. At last, all attributes with odd index are taken as a view,
while attributes with even index are regarded as another view.

Let pi represent the probability of samples belonging to class Ci in dataset D. The
value of pi is calculated by the following formula.

pi =
|ci,D|
|D|

(1)

where |ci,D| denotes the number of samples belonging to class Ci in dataset D and |D| is
the total number of samples in D.

The expectation information of classification in dataset |D| can be depicted as:

Info(D) = −
|C|∑
i=1

pilog2(pi) (2)

where |C| represents the number of classes of samples in dataset D.
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Based on this, we define the entropy of each attribute as follows.

InfoA(D) =

|V |∑
j=1

|Dj|
|D|
× Info(Dj) (3)

where InfoA(D) is the entropy of attribute A in the dataset D. |V | is the number of classes
of samples in D under attribute A, |V | ≤ |C|. Dj is the number of samples belonging to
class Cj under attribute A.

2.2. Prediction confidence of nearest neighbor unlabeled samples. We assume
that an unlabeled sample x = {a1, a2, · · · , am}, and ai (i = 1, 2, · · · ,m) is an attribute
of unlabeled sample x. The label of x belongs to C = {C1, C2, · · · , Cn}. Afterwards, we
can calculate the p(C1|x), p(C2|x), · · · , p(Cn|x). If p(Ck|x) = max{p(C1|x), p(C2|x), · · · ,
p(Cn|x)}, k = 1, 2, · · · , n, then with a high probability, the label of x is Ck. In this paper,
we define the prediction confidence of sample x as h(x) = p(Ck|x). As a result, the key
point is to work out p(C1|x), p(C2|x), · · · , p(Cn|x). As we all know, if each attribute
of the training data is conditional independent, then we can acquire p(Ci|x) by Bayes
Theorem [6, 9].

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
(4)

As the denominator in Equation (4) is a constant, the question is to acquire the value
of p(x|Ci)p(Ci). Because each attribute of the training data is conditional independent,
we can work out p(x|Ci)p(Ci) with the following equation.

p(x|Ci)p(Ci) = p(a1|Ci)p(a2|Ci) · · · p(am|Ci)p(Ci)

= p(Ci)
m∏

j=1

p(aj|Ci)
(5)

While p(Ci) can be estimated approximately by Equation (6).

p(Ci) =

|D|∑
j=1

p(j, Ci)

|D|
(6)

where |D| is the total number of samples in D, p(j, Ci) denotes the probability of sample
xj belonging to class Ci.

Under the theory of clustering hypothesis, if an unlabeled sample x is labeled with
a high prediction confidence, while its nearest unlabeled samples have lower prediction
confidence, then it might hint that x is labeled incorrect. Thereby, in order to prevent the
unlabeled samples from being incorrectly labeled, when labeling unlabeled sample xi, the
prediction confidence of the nearest neighbors should be taken into account. In another
word, for each unlabeled sample xj ∈ neighbork(xi), xi and xj need to fulfill Inequality
(7).

|h(xi)− h(xj)| ≤ ε (7)

where h(xi) is the prediction confidence of unlabeled sample xi. ε→ 0 is a threshold.

3. Increase-CoTrain. Based on the entropy-based division of views and prediction con-
fidence of nearest neighbor unlabeled samples in Section 2, we put forward an increasing
co-training algorithm, Increase-CoTrain in short. Increase-CoTrain firstly partitioned the
attributes of training dataset into two views by entropy-based division of views. Then, in
each view, it generates the initial labeled samples and unlabeled samples via the projec-
tion of the training dataset on the two views respectively. After that, Increase-CoTrain
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trains two classifiers on the labeled samples of the two views. In each iteration of Increase-
CoTrain, each classifier labels unlabeled samples which both have the highest prediction
confidence but also have small difference of the prediction confidence of their nearest
neighbor unlabeled samples. When the algorithm reaches the iteration time, the two clas-
sifiers are assembled as the final classifier. The detail description of Increase-CoTrain is
depicted in Algorithm 1.

Algorithm 1 Increase-CoTrain: Increasing co-training with prediction confidence of near-
est neighbor unlabeled samples
Input:

L: Original labeled sample set;
U : Unlabeled sample set;
Learner: Learning algorithm;
IterNum: the iteration time of algorithm;
k: the number of the nearest neighbors of the choosing unlabeled sample;
ε: threshold of the prediction confidence between the choosing unlabeled sample and its
neighbor.

Output:
1: Dividing the attributes of training dataset into two views V1, V2 by Equations (1), (2), (3)
2: Splitting L, U respectively into V1, V2 and generating LV1 , LV2 , UV1 , UV2

3: for t = 1 to 2 do
4: classifier t = Learner(LVt)
5: end for
6: for iter = 1 to IterNum do
7: for t = 1 to 2 do
8: ta = mod(t,2) + 1
9: Uxy = ∅, Lxy = ∅

10: for i = 1 to |UVta | do
11: Labeling xi by classifier ta and adding xi with its label into Uxy

12: Calculating the prediction confidence of xi by Equations (4), (5), (6)
13: end for
14: Removing samples with the highest prediction confidence from Uxy to Lxy

15: for i = 1 to |Lxy| do
16: f = false
17: for j = 1 to |neighbork(xi)| do
18: if !(|h(xi)− h(xj)| ≤ ε) then
19: f = true
20: end if
21: end for
22: if f == false then
23: Taking xi and its label into LVt

24: Deleting xi from UVta

25: end if
26: end for
27: end for
28: for t = 1 to 2 do
29: classifier t = Learner(LVt)
30: end for
31: end for
32: classifier ← Assemble(classifier1&classifier2)
33: return classifier
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4. Experiments. In this part, we experiment on several datasets from UCI [10] to ex-
amine the performance of Increase-CoTrain. The detail information of each dataset is
delineated in Table 1.

Table 1. Experimental data sets

data set #features #samples #class #pos/#neg
colic 22 368 2 63.0%/37.0%

hypothyroid 25 3163 2 4.8%/95.2%
sick 29 3772 2 6.1%/93.9%

wdbc 30 569 2 37.3%/62.7%

In experiments, for each experimental dataset, we randomly take 80% samples as train-
ing data while the rest as test data. In training data, 20% samples are selected as initial
labeled data and the rest as unlabeled data. The learning algorithm to train classifiers
for each algorithm in experiments is BP neural network. In experiments, to overcome
the random results, each algorithm is trained 20 times on each dataset and the average
results are regarded as the final experimental results. Furthermore, we set IterNum = 6
and k = 20 in experiments.

4.1. Investigating sensitivity of Increase-CoTrain with threshold ε. To investi-
gate the sensitivity of Increase-CoTrain with threshold ε, we set ε = 0.01, 0.05, 0.10, 0.15
respectively. With each ε, we train Increase-CoTrain on each experimental dataset and
record the corresponding classification error rate of classifiers trained on Increase-CoTrain
in each iteration. The average classification error rates on the four experimental datasets
are explicitly depicted in Figure 1.
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Figure 1. Performance of increase-CoTrain with different threshold ε

From Figure 1, it can be obviously observed that, when ε = 0.05 or ε = 0.10, classifiers
trained on Increase-CoTrain can achieve a lower classification error rate. This fact can be
attributed to the following reasons. In Increase-CoTrain, when ε is too small, it is difficult
to seek out unlabeled samples which can fulfill Inequation (7); as a result, few unlabeled
samples with highest prediction confidence can be labeled, which clearly prevent from
strengthening the main classifier. On the contrary, when ε gets a big value, it is easy to
fulfill Inequation (7), as long as a number of unlabeled samples with highest prediction
confidence are labeled, many noisy labels may be introduced, which also makes bad effect
on the performance of Increase-CoTrain.
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4.2. Comparing Increase-CoTrain with relative co-training algorithms. In the
second experiment, aiming at validating the performance of Increase-CoTrain, we com-
pare it with co-training in paper [2], NoNeighbor-CoTrain (Increase-CoTrain without the
consideration of the prediction confidence of the nearest neighbor unlabeled samples). We
set ε = 0.05 and write down the classification error rate of each comparing algorithm in
each iteration. The results on each of four datasets are presented in Figure 2.
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Figure 2. Classification error rate of co-training, NoNeighbor-CoTrain,
Increase-CoTrain

From Figure 2, we can know that Increase-CoTrain always performs better than its
comparing algorithms on classification accuracy. Meanwhile, with the increment of the
IterNum, Increase-CoTrain is more stable than co-training and NoNeighbor-CoTrain,
which demonstrates the efficiency of the introduction of the prediction confidence of the
nearest neighbor unlabeled samples.

5. Conclusion. Above all, this paper is a discussion about co-training algorithm in ma-
chine learning. Specifically, in this paper, we introduce entropy-based division of views
into co-training to solve the problem that most training datasets are lack of sufficient
and redundant views; besides, the prediction confidence of the nearest neighbor unlabeled
samples is taken into account in co-training to prevent the introduction of noisy labels.
The experiments validate the efficiency of our proposed algorithm. As the algorithm is a
bit complicate, our future work is to simplify the algorithm by finding novel methods.
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