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Abstract. This paper is concerned with the finite frequency (FF) bounded realness
for nonstandard singularly perturbed model (SPM). By using the generalized Kalman-
Yakubovic̆-Popov (GKYP) lemma, we develop the FF H∞ controller for nonstandard
SPM within the low and high frequency range, respectively. The matrix inequality con-
ditions are derived in terms of bilinear matrix inequalities (BMIs) independent of the
small perturbation parameter, which avoid calculation stiffness. These results are also
applicable to the standard case of SPM. Finally, some numerical examples are given to
demonstrate the validity and advantage of the proposed method.
Keywords: Finite frequency, Robust control, Nonstandard singularly perturbed model

1. Introduction. The slow and fast dynamical phenomena occurring in multiple time
scales exist widely in engineering applications. It also brings new challenge to control
theory since the direct use of standard control method on multiple time scale systems
may lead to calculation stiffness and controller ill-conditioning. To overcome these dis-
advantages, singularly perturbed theory is introduced to model the multiple time scale
system and the controller is developed based on the SPM.

Among the literature, the majority deals with the problem in time domain. Various
control strategies have been developed for both standard and nonstandard cases of SPM.
For example, optimal control for standard case was developed in [1] and nonstandard
case in [2]. The control of SPM has also been applied in various fields, such as miniature
unmanned aerial vehicle, hydraulic systems in [3], and optical networks in [4]. It is worth
mentioning that all the aforementioned results, regardless of the standard case or non-
standard case, are in the time domain. However, in engineering practice, the frequency
information is more intrinsic and used more often. Thus, the frequency analysis of SPM
is important for practical meaning.

Compared with the work in time domain, the result of SPM in frequency domain is
rarely developed. The foundation of frequency analysis for standard SPM was established
in [5]. The model-matching problem for standard two time scale transfer functions was
studied in [6] and [7] via minimizing the H∞ norm of the peak error. [8] provided differ-
ent frequency domain approaches to compute the upper bound of the small perturbation
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parameter. To the best of our knowledge, most of the frequency analyses of SPM were
dealing with the standard case. Although some papers, such as [9], addressed the fre-
quency analysis of nonstandard SPM by converting nonstandard SPM to standard case,
the method had no significant difference and needed additional assumptions for the trans-
formation. In this paper, we directly perform the frequency analysis to the nonstandard
case using the GKYP lemma. Moreover, the FF bounded realness, which is less conser-
vative than the full frequency bounded realness, is also obtained by applying the GKYP
lemma. Compared with the traditional KYP lemma, FDI in the GKYP lemma need
not cover the entire frequency domain but a finite frequency range. So researchers only
need to deal with a certain frequency range of the system they concern, which is more
precise and practical. Compared with nonstandard SPM, standard SPM needs additional
assumption on the state matrix such that fast and slow decomposition can be applied.
In our work, the GKYP lemma is introduced into the frequency analysis of nonstandard
SPM. The conditions of bounded realness are derived for nonstandard SPM within differ-
ent frequency ranges. The small perturbation parameter ε is removed from the conditions
such that calculation stiffness can be circumvented. Time domain interpretations are
presented such that the finite frequency characterization is more intuitive.

The rest of the paper is organized as follows. The problem formulation is presented in
Section 2. In Section 3, we derive the conditions of FF bounded realness for SPM and
provide its time domain interpretation. The numerical simulation is provided in Section
4 to demonstrate the validity and superiority of the proposed method. Finally, the paper
is concluded in Section 5.

2. Problem Formulation. The nonstandard SPM considered in this paper is shown as

ẋ1(t) = A11x1(t) + A12x2(t) + B11w(t) + B21u(t),
εẋ2(t) = A21x1(t) + A22x2(t) + B12w(t) + B22u(t),
z(t) = C11x1(t) + C12x2(t) + D12u(t),

(1)

where A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , B11 ∈ Rn1×l, B21 ∈ Rn1×m, A21 ∈ Rn2×n1 , A22 ∈
Rn2×n2 , B12 ∈ Rn2×l, B22 ∈ Rn2×m, C11 ∈ Rm2×n1 , C12 ∈ Rm2×n2 and D12 ∈ Rm2×m

are constant coefficient matrices of the system. A22 is the singular matrix. x1(t) ∈ Rn1 ,
x2(t) ∈ Rn2 are state variables and z(t) ∈ Rm2 is controlled output. u(t) ∈ Rm denotes
the control input and w(t) ∈ Rl represents the disturbance. ε is the small perturbation
parameter which satisfies 0 < ε ≪ 1. Specifically, the control input u(t) takes the form
u(t) = Kx(t) where K is the control gain to be determined. The closed-loop form of (1)
is rewritten as

Eεẋ(t) = (A + B2K)x(t) + B1w(t), (2a)

z(t) = Cx(t), (2b)

where

Eε =

[
I 0
0 ε

]
, A =

[
A11 A12

A21 A22

]
, C1 =

[
C11 C12

]
, x(t) =

[
xT

1 (t) xT
2 (t)

]T
,

B1 =
[

BT
11 BT

12

]T
, B2 =

[
BT

21 BT
22

]T
, C = C1 + D12K.

The main objective of this paper is to design controller such that the FF bounded real-
ness is satisfied, that is, the following requirements Q1) and Q2) are met simultaneously.
Q1) System (2) is asymptotically stable with w(t) = 0,
Q2) ∥Twz(jω)∥ < γ, for ω ∈ Ω, where symbol γ is the noise attenuation level and Ω
denotes the frequency range. Twz(jω) represents the transfer function from w(t) to z(t)
and

Twz(jω) = C(jωEε − (A + B2K))−1B1. (3)
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3. Main Results. This section is devoted to deriving the conditions of FF bounded
realness for system (2). Specifically, some sufficient conditions are presented in terms of
bilinear matrix inequalities (BMIs) such that FF bounded realness is satisfied in the low
and high frequency ranges, respectively. It is worth mentioning that the conditions in
this section are all independent of the small perturbation parameter ε, which can cause
calculation stiffness.

3.1. Parameter-independent FF bounded realness. We first introduce the following
theorem such that system (2) satisfies Q1).

Theorem 3.1. If we have Ps =

[
Ps11 0
Ps21 Ps22

]
with Ps11 > 0 and Ps22 > 0 such that

(A + B2K)T Ps + P T
s (A + B2K) < 0, (4)

then there exists an ε∗ > 0 such that system (2a) is asymptotically stable with w(t) = 0
for ε ∈ (0, ε∗].

Theorem 3.2. Considering the closed-loop system (2), the low frequency bounded realness

∥Twz(jω)∥ < γ1, ∀|ω| ≤ ωl (5)

holds for ε ∈ (0, ε∗], ε∗ > 0, if there exist matrix variables Q1 > 0, Pl11 ∈ Hn1, Pl22 ∈ Hn2,
Pl21 and K such that the following BMIs hold

Φ =

 Φ(1, 1) Φ(1, 2) (C1 + D12K)T

∗ −BT
1 Q1B1 − γ2

1I 0
∗ ∗ −I

 < 0, (6)

where

Φ(1, 1) = P T
l (A + B2K) + (A + B2K)T Pl + ω2

l H
T Q1H,

Φ(1, 2) = −(A + B2K)T Q1B1 + P T
l B1,

Pl =

[
Pl11 0
P T

l12 Pl22

]
, H =

[
I 0
0 0

]
.

Proof: According to [11], low frequency bounded realness (5) can be derived from[
A + B2K B1

Eε 0

]T [
−Q1 Plε

Plε ω2
l Q1

] [
A + B2K B1

Eε 0

]
+

[
C 0
0 I

]T [
I 0
0 −γ2

1I

] [
C 0
0 I

]
< 0, (7)

where Q1 > 0. The following inequality is then obtained

Φ0 =

[
Φ0(1, 1) Φ0(1, 2)

∗ −BT
1 Q1B1 − γ2

1I

]
< 0, (8)

with

Φ0(1, 1) = −(A + B2K)T Q1(A + B2K) + ET
ε Plε(A + B2K)

+(A + B2K)T PlεEε + ω2
l E

T
ε Q1Eε + CT C,

Φ0(1, 2) = −(A + B2K)T Q1B1 + ET
ε PlεB1.

It is worth mentioning that Φ0 < 0 is the nonlinear matrix inequality and difficult
to solve out. In the sequel, we will transform the nonlinear matrix inequality into its
special case BMIs which can be solved by calculation software. Since Q1 > 0, we have
−(A + B2K)T Q1(A + B2K) < 0. Thus, the sufficient condition of Φ0 < 0 is

Φ1 =

[
Φ1(1, 1) Φ1(1, 2)

∗ −BT
1 Q1B1 − γ2

1I

]
< 0, (9)
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with

Φ1(1, 1) = ET
ε Plε(A + B2K) + (A + B2K)T PlεEε + ω2

l E
T
ε Q1Eε + CT C,

Φ1(1, 2) = −(A + B2K)T Q1B1 + ET
ε PlεB1.

By using the Shur Complement, Φ1 < 0 can be rewritten as Φ2 < 0 where

Φ2 =

 Φ2(1, 1) Φ2(1, 2) (C1 + D12K)T

∗ −BT
1 Q1B1 − γ2

1I 0
∗ ∗ −I

 , (10)

with

Φ2(1, 1) = ET
ε Plε(A + B2K) + (A + B2K)T PlεEε + ω2

l E
T
ε Q1Eε,

Φ2(1, 2) = −(A + B2K)T Q1B1 + ET
ε PlεB1.

Let us denote Plε =

[
Pl11 Pl12

P T
l12

1
ε
Pl22

]
, and we have

PlεEε =

[
Pl11 Pl12

P T
l12

1
ε
Pl22

] [
I 0
0 ε

]
=

[
Pl11 0
P T

l12 Pl22

]
+ O(ε), (11)

ET
ε Q1Eε =

[
I 0
0 0

]
Q1

[
I 0
0 0

]
+ O(ε). (12)

Substituting (11) and (12) into (10), we rewrite Φ2 as

Φ2 = Φ + O(ε).

According to [10], Φ2 < 0 can be easily obtained from Φ < 0 for all ε ∈ (0, ε∗], ε∗ > 0.
This completes the proof. �
Theorem 3.3. Considering the closed-loop system (2), the high frequency bounded real-
ness

∥Twz(jω)∥ < γ2, ∀|ω| ≥ ωh (13)

holds for ε ∈ (0, ε∗], ε∗ > 0, if there exist matrix variables X2 > 0, Ph11 ∈ Hn1, Ph22 ∈
Hn2, Ph21, K and constant α > 0 such that the following BMIs hold

Ψ =


Ψ(1, 1) P T

h B1 Ψ(1, 3) Ψ(1, 4)
∗ −γ2

2I BT
1 0

∗ ∗ −X2 0
∗ ∗ ∗ −I

 < 0, (14)

where

Ψ(1, 1) = P T
h (A + B2K) + (A + B2K)T Ph + ω2

hα
2X2 − ω2

hαH − ω2
hαHT ,

Ψ(1, 3) = (A + B2K)T , Ψ(1, 4) = (C1 + D12K)T ,

Ph =

[
Ph11 0
P T

h12 Ph22

]
, H =

[
I 0
0 0

]
.

Proof: According to [11], high frequency bounded realness (13) is derived from[
A + B2K B1

Eε 0

]T [
Q2 Phε

Phε −ω2
hQ2

] [
A + B2K B1

Eε 0

]
+

[
C 0
0 I

]T [
I 0
0 −γ2

2I

] [
C 0
0 I

]
< 0, (15)

where Q2 > 0. The following is then obtained

Ψ1 =

[
Ψ1(1, 1) Ψ1(1, 2)

∗ BT
1 Q2B1 − γ2

2I

]
< 0, (16)
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with

Ψ1(1, 1) = (A + B2K)T Q2(A + B2K) + ET
ε Phε(A + B2K) + (A + B2K)T PhεEε,

−ω2
hE

T
ε Q2Eε + CT C,

Ψ1(1, 2) = (A + B2K)T Q2B1 + ET
ε PhεB1.

Note that Ψ1 < 0 is the nonlinear matrix inequality and difficult to solve out, and we
will transform it into its special case BMIs. By using the Shur Complement, Ψ1 < 0 is
rewritten as Ψ2 < 0, where

Ψ2 =


Ψ2(1, 1) ET

ε PhεB1 Ψ2(1, 3) Ψ2(1, 4)
∗ −γ2

2I BT
1 0

∗ ∗ −Q−1
2 0

∗ ∗ ∗ −I

 , (17)

with

Ψ2(1, 1) = ET
ε Phε(A + B2K) + (A + B2K)T PhεEε − ω2

hE
T
ε Q2Eε,

Ψ2(1, 3) = (A + B2K)T , Ψ2(1, 4) = (C1 + D12K)T .

Let us denote Phε =

[
Ph11 Ph12

P T
h12

1
ε
Ph22

]
, and we have

PhεEε =

[
Ph11 Ph12

P T
h12

1
ε
Ph22

] [
I 0
0 ε

]
=

[
Ph11 0
P T

h12 Ph22

]
+ O(ε), (18)

ET
ε Q2Eε =

[
I 0
0 0

]
Q2

[
I 0
0 0

]
+ O(ε). (19)

Substituting (18) and (19) into (17), we have

Ψ2 = Ψ3 + O(ε), (20)

where

Ψ3 =


Ψ3(1, 1) P T

h B1 Ψ3(1, 3) Ψ3(1, 4)
∗ −γ2

2I BT
1 0

∗ ∗ −Q−1
2 0

∗ ∗ ∗ −I

 , (21)

with

Ψ3(1, 1) = P T
h (A + B2K) + (A + B2K)T Ph − ω2

hH
T Q2H,

Ψ3(1, 3) = (A + B2K)T , Ψ3(1, 4) = (C1 + D12K)T .

According to [10], there exists an ε∗ > 0 such that Φ2 < 0 can be derived from Φ3 < 0 for
all ε ∈ (0, ε∗). The following inequality holds

−ω2
hH

T Q2H < ω2
hα

2Q−1
2 − ω2

hαH − ω2
hαHT . (22)

Substituting the right hand of (22) into (21), we have

Ψ4 =


Ψ4(1, 1) P T

h B1 Ψ4(1, 3) Ψ4(1, 4)
∗ −γ2

2I BT
1 0

∗ ∗ −X2 0
∗ ∗ ∗ −I

 < 0, (23)

with

Ψ4(1, 1) = P T
h (A + B2K) + (A + B2K)T Ph + ω2

hα
2X2 − ω2

hαH − ω2
hαHT ,

Ψ4(1, 3) = (A + B2K)T , Ψ4(1, 4) = (C1 + D12K)T .

Denote Q−1
2 as X2 and the proof is completed. �
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Let us denote γ = γ1 = γ2. Theorems 3.1 to 3.3 actually suggest that, if the following
optimization problem

γ∗ = min
γ,Ps,Pl,Ph,Q1,X2,K

γ, subject to (4), (6), (14) (24)

has a solution set (γ, Ps, Pl, Ph, Q1, X2, K), then the feedback control law is the optimal
which ensures the minimization of γ in the given frequency range characterized by ωl and
ωh.

3.2. Time domain interpretation. To characterize the FF bounded realness more in-
tuitively, the following content presents the time domain characterization in terms of
input/output signals.

Theorem 3.4. Considering the transfer function Twz(jω) in (3), if Twz(jω) is asymptot-
ically stable and satisfies bounded realness in the low frequency range, we have∫ ∞

0

zT (t)z(t)dt < γ2
1

∫ ∞

0

wT (t)(t)w(t)dt + xT
1 (0)P11x1(0) + O(ε) (25)

holds for all square integrable inputs u(t) such that∫ ∞

0

ẋT
1 (t)ẋ1(t)dt < ω2

l

∫ ∞

0

xT
1 (t)x1(t)dt. (26)

Proof: Left and right multiplying (7) with
[
xT (t) wT (t)

]
and its transpose, we have

−(Eεẋ(t))T Q1Eεẋ(t) + ω2
l (Eεx(t))T Q1Eεx(t) +

d

dt
(xT (t)ET

ε PlεEεx(t))

+zT (t)z(t) − γ2
1w

T (t)w(t) < 0. (27)

Since the following equations hold

ET
ε Q1Eε =

[
Q111 εQ112

εQT
112 ε2Q122

]
, ET

ε PlεEε =

[
Pl11 εPl12

εP T
l12 εP T

l22

]
,

we have [
ẋT

1 (t) ẋT
2 (t)

] [
Q111 εQ112

εQT
112 ε2Q122

] [
ẋ1(t)
ẋ2(t)

]
= ẋT

1 (t)Q111ẋ1(t) + O(ε), (28)

[
xT

1 (t) xT
2 (t)

] [
Q111 εQ112

εQT
112 ε2Q122

] [
x1(t)
x2(t)

]
= xT

1 (t)Q111x1(t) + O(ε), (29)

[
xT

1 (t) xT
2 (t)

] [
Pl11 εPl12

εP T
l12 εP T

l22

] [
x1(t)
x2(t)

]
= xT

1 (t)Pl11x1(t) + O(ε). (30)

Substituting (28)-(30) into (27), we have

−ẋT
11(t)Q111ẋ11(t) + ω2

l x
T
11(t)Q111x11(t) +

d

dt

(
xT

11(t)Pl11x11(t)
)

+zT (t)z(t) − γ2
1w

T (t)w(t) + O(ε) < 0. (31)

Integrating (31) from t = 0 to t = ∞ and using the stability property

tr

{
Q111

∫ ∞

0

[
−ẋT

11(t)ẋ11(t) + ω2
l x

T
11(t)x11(t)

]
dt

}
< −

∫ ∞

0

zT (t)z(t)dt + γ2
1

∫ ∞

0

wT (t)w(t)dt + xT
11(0)Pl11x11(0) + O(ε). (32)

This completes the proof. �
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4. Numerical Example. Consider the dynamic model in [2].

ẋ1(t) = A11x1(t) + A12x2(t) + B11w(t) + B21u(t),
εẋ2(t) = A21x1(t) + A22x2(t) + B12w(t) + B22u(t),
z(t) = C11x1(t) + C12x2(t) + D12u(t),
zT (t) =

[
z1(t) z2(t) z3(t) z4(t) z5(t)

]
.

(33)

The system model is the nonstandard SPM since the matrix A22 is singular. We assign
ωh1 = 5 and ωh2 = 5, ωl2 = 3, respectively. The constant α is chosen to be 1. The control
results are presented in Table 1.

Table 1. The control results by using Theorems 3.2 and 3.3

Frequency range γ∗ Feedback gain

ωh1 = 5 1.6870 Ka = 103 × [ −0.0663 −6.0331 −0.0117 −0.0035 ]
ωl2 = 3, ωh2 = 5 7.1530 Kb = 103 × [ −2.0642 −1.0863 −0.0004 −0.0001 ]

From Table 1, we can see that γ∗ is smaller if FF bounded realness covers a more narrow
frequency range. Thus, if more prior knowledge of the frequency band of w(t) is available,
we can get better noise attenuation level γ∗. Then, we introduce the mean square error
(MSE) to describe the combined result of all outputs.

MSE(t) =

5∑
i=1

z2
i (t)

5
(34)

We set the initial values x(0) =
[

0 0 0 0
]T

and the perturbation parameter ε =
0.005. The external disturbance is w(t) = 0.01sin(6.5t). Then, we apply Ka and compare
the control result with that of [2]. The resultant curves of MSE(t) are shown in Figure 1.
We conclude from Figure 1 that the control method proposed in this paper is superior in
the sense of MSE(t) within the given frequency ranges. In order to seek the impact of the

small perturbation parameter ϵ, we reassign the initial values x(0) =
[

0 0 10 0
]T

and apply Ka to system (33). The resultant curves are shown in Figure 2. From Figure
2, we can see that more satisfactory control result can be obtained if the perturbation
parameter ε is smaller, which is the character of SPM.

0 1 2 3 4 5
0

1

x 10
−4 MSE(t)

Time(sec.)

Figure 1. The curves of MSE(t) comparison between FF robust criterion
with solid line and robust criterion in full frequency with dash line
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Figure 2. Output responses comparison between ε = 0.005 with solid line
and ε = 0.015 with dash line

5. Conclusion. This paper has investigated the FF bounded realness for nonstandard
SPM. The perturbation parameter independent condition for the FF bounded realness
has been derived using the GKYP lemma. To characterize the system more intuitively,
time domain interpretations are presented. One advantage is that the proposed method,
which can be applied to both standard and nonstandard SPM, achieves better H∞ per-
formance if the frequency range of the noise is known in advance; another advantage is
that the BMI conditions are all independent of the small perturbation parameter, avoid-
ing ill-conditioned matrix during calculation. Simulation results have demonstrated the
effectiveness and advantage of the proposed method.
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