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Abstract. Controllability is a key issue in the study of multi-agent systems. The con-
trollability of a multi-agent system with non-identical nodes which is closer to the actual
engineering network is paramount. This paper mainly studies the controllability of the
directed tree consisting of non-identical nodes under the broadcasting control signal based
on the graph theory and the matrix theory. Some necessary and sufficient conditions are
summarized for the controllability of the non-identical node dynamics. The controlla-
bility of star graph is also studied under the non-identical node dynamics. It is shown
that the controllability of the star graph is changed when the non-identical nodes receive
the broadcasting control signal. The results in this paper show that the weight and the
non-identical agents determine the controllability of the multi-agent systems. Some meth-
ods for improving the controllability of the directed tree graph consisting of non-identical
nodes are presented.
Keywords: Multi-agent systems, Broadcasting control signals, A directed tree, Star
graph

1. Introduction. The technology of multi-agent systems has been a hot topic in recent
years. It transmutes the system which is large and complex into small and simple systems
through interactive communication. Besides, it has some features such as coordination,
autonomy, and self-organization. Therefore, it is widely applied in many fields [1-3], such
as formation control of robot, intelligent transportation, and marine technology [4-9].

In 2004, the definition of controllability was first put forward by Tanner for the simple
interconnected system model [10]. He raised the classical controllability of a single leader
and derived the necessary and sufficient conditions of one-integrator dynamics through
controlling the behaviors of the leader. Rahmani et al. [11] proposed the transport control
protocol (TCP) and obtained the algebra and graph theory conditions of the controllability
of multi-agent systems. Liu et al. [12] developed the controllability of the discrete system
with switching topology, and proved that the controllability of multi-agent systems is
determined by the information which is transmitted between leaders and followers. With
the development of the multi-agent system under leader-follower framework, the study of
the system under new framework aroused more and more attention, many people begin to
research the controllability of the system under the broadcasting signal framework, and
some available results were obtained in this respect [13,14].

Compared with the leader-follower framework, the broadcasting signal framework has
the following advantages. 1) It has been widely used in real life, such as television stations.
2) It does not need to provide the communication equipment which is used for leaders
and followers. Most networks in practical engineering has non-identical node dynamics.
Therefore, the research of the controllability of multi-agent systems under non-identical
node dynamics has fundamental significance [15,16].
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The contributions of this paper are as follows. The classical concept of controllability
from control theory is extended to directed tree topologies with the non-identical node
dynamics when all agents receive a broadcasting control signal. Some necessary and suffi-
cient conditions are given in algebraic form. Furthermore, some approaches to improving
the controllability are presented.

The paper is organized as follows. Section 2 is a brief review of the graph theory used
in the paper. Section 3 follows with an introduction of the non-identical node dynamics
system and the necessary and sufficient condition. Our main result is presented in Sections
4 and 5, in which simulation results are included to verify the analytical derivations. We
conclude this paper in Section 6.

2. Problem Statement and Preliminaries. A graph G = (V , E) consists of a vertex
set V = [v1, v2, . . . , vn], and an edge set E = [(vi, vj) : vi, vj ∈ V ], where an edge is an
ordered pair of distinct vertices of V . A = [aij] is the adjacency matrix, if aij ∈ E then
aij > 0; otherwise, aij = 0. If {j, i} ∈ E , then we say vi and vj are adjacent. The
neighborhood set of vertex vi is denoted by Ni = {j ∈ v : (j, i) ∈ E}. The degree
of v is dv := [Nv]. A path in G of length k is a subgraph of G consisting of vertices
{v0, v1, . . . , vk} ⊂ V and edges {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} ⊂ E , where all vi are
distinct. If there is a path between any two vertices of G, we say G is connected. A
graph G is called undirected graph if {j, i} ∈ E ⇔ {i, j} ∈ E for any vertexes vi and vj;
otherwise, we say the graph is directed graph. We denote by D the degree matrix of G,
the diagonal matrix whose ith diagonal entry is di. The Laplacian of G is defined as

L = D − A

A digraph is called directed tree if only one vertex is called root which has no any
parent, and other vertexes are divided into the mutually disjoint sets.

3. The Controllability of the Non-Identical Node Dynamics System. Consider
a non-identical node dynamics system:

ẋi = ciFxi +
∑

j=Ni

LijF (xi − xj) + bui, i = 1, 2, . . . , n (1)

where xi ∈ Rm is the state vector of agent i, and ui ∈ Rp is the external input or signal.
If all agents receive the same control signal, then we say the signal ui is the broadcasting
control signal. b ∈ Rm×1 is the control input matrix. F is a constant matrix describing
the inner coupling between different agents, the matrix ciFxi describing the intrinsic

dynamics of node i. Let x =
[
xT

1 , xT
2 , . . . , xT

n

]T ∈ Rm×n, and then system (1) can be
rewritten in a matrix form as

ẋ = [(C − L) ⊗ F ] x + (In ⊗ b) u (2)

where C = diag(c1, c2, . . . , cn). As we all know, the Laplacian matrix L and the constant
matrix F of directed tree topologies are lower triangular matrixes.

Theorem 3.1. System (1) containing a directed tree is controllable if and only if the
following conditions are satisfied:

(1)
[

F b
]

is a controllable matrix pair;
(2) The diagonal entries on (C − L) ⊗ F are all nonzero and distinct.

Proof: The controllability matrix of system (1) is[
(In ⊗ b) [(C − L) ⊗ F ] (In ⊗ b) · · · [(C − L) ⊗ F ]mn−1 (In ⊗ b)

]
Because C and L are both lower triangular matrixes, [(C − L) ⊗ F ] is also a lower trian-
gular matrix, then [(C − L) ⊗ F ] has the form as PΛP T , where P is a similitude transfor-
mation matrix, Λ is a diagonal matrix, and its diagonal entries are equal to the diagonal
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entries on [(C − L) ⊗ F ]. Then the controllability matrix can be written as[
(In ⊗ b) PΛP T (In ⊗ b) · · ·

(
PΛP T

)mn−1
(In ⊗ b)

]
Extracting the similitude transformation matrix P , the controllability matrix can be

written as
P

[
P T (In ⊗ b) ΛP T (In ⊗ b) · · · Λmn−1P T (In ⊗ b)

]
Because the matrix P is full rank, P does not affect the rank of the controllability

matrix. We can just study the following matrix[
P T (In ⊗ b) ΛP T (In ⊗ b) · · · Λmn−1P T (In ⊗ b)

]
If the matrix is full rank, then the column vectors of P are not orthogonal to any

column vector of In ⊗ b; in other words, the eigenvectors (C − L)⊗ F are not orthogonal
to In ⊗ b, if the diagonal entries on [(C − L) ⊗ F ] are all nonzero, and let v1 and v2 be
non-zero eigenvectors of C − L and F respectively. So the eigenvectors of (C − L) ⊗ F
can be written as v1 ⊗ v2. Then we say that the eigenvectors of (C − L) ⊗ F which are
not orthogonal to In ⊗ b can translate into

(
vT

1 In

)
⊗

(
vT

2 b
)
̸= 0T .

From above, system (1) is controllable if and only if the following conditions are true:
(1) vT

1 In ̸= 0T , it is meaning that the eigenvectors of C − L are not orthogonal to any
In; in other words, the eigenvectors of C−L are non-zero. Since the eigenvectors of C−L
are non-zero, we do not need to consider this condition;

(2) vT
2 b ̸= 0T , that is,

[
F b

]
is a controllable matrix pair.

Λ is a diagonal matrix, when Λ is multiplied by a matrix, the entries on the matrix can
only be zoomed at the same rate. When the entries on Λ are the same, the controllability
matrix will show rows which are linearly dependent, and the system is uncontrollable.
Because Λ is diagonal entries on (C − L)⊗ F , the diagonal entries on (C − L)⊗ F must
be distinct.

From above, the controllability of the directed tree topology under the broadcasting
control signal can translate into the controllability of its subsystem ẋ = Fx + bu.

4. The Controllability of the Subsystem. In this section, we mainly concern with
the controllability of the subsystem

ẋ = Fx + bu (3)

Because Fm×m is a constant matrix describing the inner coupling between different agents,
F can be decomposed as

F =

[
f11 01×(m−1)

F(m−1)×1 Fe(m−1)×1

]
∈ Rm×m

where F(m−1)×1 = [f21, f31, . . . , fm1], Fe =

 f22 0
...

. . .
fm2 · · · fmm

.

Theorem 4.1. (PBH rank test) System (3) is controllable if and only if it satisfies one
of the following conditions:

(1) rank (sI − Fe, F1) = m − 1, ∀s ∈ C;
(2) rank (λiI − Fe, F1) = m− 1, ∀i = 1, 2, . . . , m− 1, λi is the eigenvalue of matrix Fe.

Proof: (1) Consider the system ẋ = Fx + bu, by using the PBH rank test

rank (sI − F, b) = rank

(
s − f11 0 1

F(m−1)×1 sI − Fe 1(m−1)×1

)
= m

which means that rank
(

F(m−1)×1 sI − Fe

)
= m − 1.

(2) The proof in the same rein as (1) is omitted.
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Theorem 4.2. System (3) is controllable if and only if the following conditions are sat-
isfied:

(1) The diagonal entries on F are all nonzero and distinct;
(2) The eigenvectors of F are not orthogonal to b.

Proof: The controllability matrix of system (3) is
[

b Fb · · · Fm−1b
]
. Because F

is a lower triangular matrix, we have F = UDUT , D is a diagonal matrix, and U is a
similitude transformation matrix. The controllability matrix can be written as[

b UDUT b · · ·
(
UDUT

)m−1
b

]
Extracting the similitude transformation matrix U , the controllability matrix can be

written as

U
[

UT b DUT b · · · Dm−1UT b
]

U is full rank, so U does not affect the rank of the controllability matrix. We can just
study the following matrix [

UT b DUT b · · · Dm−1UT b
]

If the matrix is full rank, the column vectors of U are not orthogonal to b. Because the
column vectors of U are the eigenvectors of F , the eigenvectors of F are not orthogonal
to b. Because the entries on D are the entries on the main diagonal of F , the diagonal
entries on F must be distinct.

5. The Controllability of Star Graph. As we know, the directed star graph is a
representative type of the directed tree graph. So we can concern with the controllability
of star graph to understand the controllability more comprehensively.

Figure 1. Star graph

In Figure 1, suppose that

F =


13
3 16
1 8
7 5
6 17
3 9

 , L =


0
5 −5
4 −4
3 −3
2 −2
1 −1

 , C =


−7

−6
−3

−5
−2

−10





ICIC EXPRESS LETTERS, VOL.11, NO.1, 2017 173

The Laplacian matrix of the star graph consisting of non-identical agents is

C − L =


−7
−5 −1
−4 1
−3 −2
−2 0
−1 −9


The eigenvalues of C − L are −9, −7, −2, −1, 1, so there are more than two eigenvalues
of (C − L) ⊗ F equal to 0, and the system is uncontrollable.

Let C =


−7

−6
−3

−5
−5

−10

, then C−L =


−7
−5 −1
−4 1
−3 −2
−2 −3
−1 −9

. The

eigenvalues of C −L are −9, −7, −3, −2, −1, 1. By calculation, there are 36 eigenvalues
of (C − L) ⊗ F that are different, and the system is controllable.

Following Theorem 3.1, the controllability of the non-identical node dynamics system
is determined by (C − L) ⊗ F and

[
F b

]
. F describes the coupling weight between

agents. C represents the coupling strength, and L represents the topological structure.
The methods for improving the controllability of the directed tree graph consisting of
non-identical nodes are as follows:

1) we can make the subsystem ẋ = Fx + bu controllable by selecting the appropriate
coupling weight matrix;

2) we can change the coupling strength, that is the agent parameter ci;
3) we can change the coupling strength and the topological structure. For example,

we can make the uncontrollable topological structure controllable by adding or removing
connection between agents.

6. Conclusions. In this paper, the controllability of the directed tree consisting of non-
identical nodes under the broadcasting control signal has been investigated. The control-
lability of the system is converted to two subproblems. The first subproblem is to analyze
the eigenvalues of (C − L)⊗F . The second subproblem is to examine the controllability of
the subsystem ẋ = Fx+ bu. The controllability of star graph is studied, and results show
that, the controllability of star graph with non-identical node dynamics can be changed.
So the non-identical node dynamics system is more complex.

The main difference between our work and the previous works lies in the introduction
of directed tree, and the results obtained here are merely a small portion in the study on
controllability of the multi-agent systems with non-identical nodes. Future research along
the same line might include the cases of directed, uncertain, and time-varying topology.
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