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Abstract. In this paper, the problem of solution of fuzzy number linear system is stud-
ied. The concepts of r-solution and r-interval value solution are given through turning
linear systems (equations) with fuzzy number coefficients into equivalent linear systems
(equations) with interval number coefficients, and fuzzy number value solution is defined
for such fuzzy number linear system. Then we obtain a method of solving trapezoidal
fuzzy number solution for linear systems (equations) with trapezoidal fuzzy number coef-
ficients, and give two examples to show the application of the method.
Keywords: Fuzzy number, Trapezoid fuzzy number, Fuzzy linear equations, Fuzzy
solution

1. Introduction. The concept of fuzzy set was first put forward by Zadeh [1] in 1965. In
1972, Chang and Zadeh [2] proposed the concept of fuzzy numbers to study the properties
of probability functions. With the development of theories and applications of fuzzy
numbers, it becomes more and more important.

On the other hand, linear systems and related problems are also an important area
of research. In conventional mathematical equation, coefficients of problems are usually
determined by the experts as crisp values. However, in reality, in an imprecise and uncer-
tain environment, it is an unrealistic assumption that the knowledge and representation
of an expert are so precise. Therefore, fuzzy and stochastic approaches are frequently
used to describe and treat imprecise and uncertain elements present in a real decision
problem. For example, in 1991, Buckley and Qu [3] discussed fuzzy matrix A is square
and always non-singular in fuzzy matrix equation and presented six new solutions and
showed that the solutions of fuzzy matrix equation Ax = b is a fuzzy vector; In 1998,
Friedman et al. [4] developed mathematical models and numerical procedures that would
appropriately treat general fuzzy linear systems and solve them; In 2004, Allahviranloo [5]
proposed using the iterative Jacobi and Gauss Sidel methods for solving fuzzy systems of
linear equations with convergence theorems; In 2013, Chakraverty and Behera [6] studied
the fuzzy system of linear equations which are solved in terms of fuzzy center and get the
solution of the original system with width; In 2014, Behera and Chakraverty [7] studied
fuzzy complex system of linear equations and handled it in a straight way; Chutia [8] dis-
cussed the basic arithmetic operations of the interval-valued trapezoidal fuzzy numbers
and the necessary and sufficient condition for existence of solutions of linear equation;
Allahviranloo et al. [9] proposed a method to find a trapezoidal solution for a fully fuzzy
linear system and consider 1-cut and 0-cut of a fully fuzzy linear system which are two
fully interval linear systems. In the above studies, it is found that the coefficient matrix A
is a crisp matrix and the unsolved vector x, the right hand b are fuzzy vector in [5, 6, 7].
While the coefficient matrix A is a fuzzy matrix and the unsolved vector x, the right hand
b are fuzzy vector in [4, 8, 9]. And most of the authors have considered the fuzzy number
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as trapezoid fuzzy number in their investigation. Here a new method is proposed and the
same is used to solve fuzzy linear system with trapezoid fuzzy number.

As discussed above, the unsolved vector x is considered as fuzzy while it may be a
real vector in the equation or in an imprecise and uncertain environment. So we use a
new method distinguished from the above method to solve the fuzzy linear system of
equations.

Due to the complexity of structure of solutions of linear systems (equations) with fuzzy
number coefficients, there are still few good results to solve such a linear system. In this
paper, we discuss the solution problem of the fuzzy system of linear equations Ax = b,
where, the elements of coefficient matrix A and the right hand vector b are all fuzzy
numbers. The specific arrangements of this paper are as follows: In Section 2, some
basic notions, definitions and results about fuzzy numbers are presented; In Section 3,
linear systems (equations) with fuzzy number coefficients are successfully translated into
equivalent linear systems (equations) with interval number coefficients. Then, by defining
the real solution, horizontal solution and horizontal interval value solution of the fuzzy
system of linear equation, the definition of their fuzzy number solution is given; In Section
4, we obtain a method of solving trapezoidal fuzzy number solution for linear systems
(equations) with trapezoidal fuzzy number coefficients, and give two examples to show
the application of the method. At last, we make a conclusion in Section 5.

2. Basic Definitions and Notations. R is the real number field, Rn is the n-dimensio-
nal real number column vector space. A fuzzy subset (in short, a fuzzy set) of R is a
function u : R → [0, 1]. For each such fuzzy set u, we denote by [u]r = {x ∈ R : u(x) ≥ r}
for each r ∈ [0, 1], its r-level set.

If u is a normal and fuzzy convex fuzzy set of R, u(x) is upper semicontinuous, and
[u]0 is compact, then we call u a 1-dimensional fuzzy number (in short, fuzzy number),
and denote the collection of all fuzzy numbers by E.

It is known that for any u ∈ E and r ∈ [0, 1], [u]r is a closed interval (denote it as
[u(r), u(r)]).

For any a ∈ R, define fuzzy number â by

â(x) =

{
1 if x = a
0 if x ̸= a

Let u, v ∈ E, the addition, multiplication and scalar multiplication on E are defined by

(u + v)(x) = sup
y+z=x

min[u(y), v(z)]

(uv)(x) = sup
yz=x

min[u(y), v(z)]

(λu)(x) =

{
u (λ−1x) , if λ ̸= 0

0̂(x) , if λ = 0

Let u, v ∈ E and k ∈ R, then u+v, uv, ku ∈ E and [u+v]r = [u]r +[v]r, [uv]r = [u]r[v]r,
[ku]r = k[u]r, for any r ∈ [0, 1].

We call

U =


u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
...

um1 um2 · · · umn

 (in short, denote it as [uij]m×n)

an m × n fuzzy number matrix, where, uij ∈ E, i = 1, 2, · · · ,m; j = 1, 2, · · · , n. And we
denote the collection of all m × n fuzzy number matrixes by Fm×n. As n = 1, we denote
Fm = Fm×1 and u = (ui)

m
i=1 = [uij]m×1 for u ∈ Fm.
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The additions and multiplications of interval number matrix and fuzzy number matrix
are defined like real number matrix.

For any two m × n real number matrixes

Ȧ =


ȧ11 ȧ12 · · · ȧ1n

ȧ21 ȧ22 · · · ȧ2n
...

...
...

ȧm1 ȧm2 · · · ȧmn

 (in short, denote it as [ȧij]m×n)

and

Ḃ =


ḃ11 ḃ12 · · · ḃ1n

ḃ21 ḃ22 · · · ḃ2n
...

...
...

ḃm1 ḃm2 · · · ḃmn


(

in short, denote it as
[
ḃij

]
m×n

)

we define A ≤ B if and only if aij ≤ bij, where i = 1, 2, · · · ,m; j = 1, 2, · · · , n.
For any u1, u2 ∈ E, we denote u1 ≤ u2 if and only if [u1]

r ≤ [u2]
r for any r ∈ [0, 1], i.e.,

u1(r) ≤ u2(r), u1(r) ≤ u2(r) for any r ∈ [0, 1].
For any U, V ∈ Fm×n, we denote U ≤ V if and only if uij ≤ vij, i = 1, 2, · · · ,m;

j = 1, 2, · · · , n.
For U, V ∈ Fm×n with U ≤ V , we say [U, V ] = {W ∈ Fm×n : U ≤ W ≤ V } to be an

m × n matrix interval.
For any U = [uij]m×n ∈ Fm×n, r ∈ [0, 1], we denote

[U ]r =


[u11]

r [u12]
r · · · [u1n]r

[u21]
r [u22]

r · · · [u2n]r

...
...

...
[um1]

r [um2]
r · · · [umn]r


i.e.,

[U ]r =


[
u11(r), u11(r)

] [
u12(r), u12(r)

]
· · ·

[
u1n(r), u1n(r)

][
u21(r), u21(r)

] [
u22(r), u22(r)

]
· · ·

[
u2n(r), u2n(r)

]
...

...
...[

um1(r), um1(r)
] [

um2(r), um2(r)
]

· · ·
[
umn(r), umn(r)

]


and denote

[U ]r =


u11(r) u12(r) · · · u1n(r)
u21(r) u22(r) · · · u2n(r)

...
...

...
um1(r) um2(r) · · · umn(r)


and

[U ]
r

=


u11(r) u12(r) · · · u1n(r)
u21(r) u22(r) · · · u2n(r)

...
...

...
um1(r) um2(r) · · · umn(r)


For U̇ = [u̇ij]m×n ∈ Rm×n, we denote U̇ ∈ [U ]r (r ∈ [0, 1]) if and only if u̇ij ∈[

uij(r), uij(r)
]

for i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

Let a1, a2, a3 and a4 ∈ R with a1 ≤ a2 ≤ a3 ≤ a4. If fuzzy number u : R → [0, 1] is
defined by

u(x) =


1, x ∈ [a2, a3]
x−a1

a2−a1
, x ∈ [a1, a2)

a4−x
a4−a3

, x ∈ (a3, a4]

0, x /∈ [a1, a4]
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then u is called a trapezoid fuzzy number, and denoted as u = F (a1, a2, a3, a4). Specially,
if a2 = a3, u is called a triangle number, and denoted u = F (a1, a2, a4). And we denote
the collection of all trapezoid fuzzy numbers by ETra and the collection of all triangle
fuzzy numbers by ETri.

2.1. Fuzzy linear system of equations. Let A = [aij]m×n ∈ Fm×n, b = (bi)
m
i=1 ∈ Fm.

In this paper, we consider the following linear system of equations with fuzzy number
coefficients:

Ax = b (1)

i.e., 
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

(2)

where, x = (xj)
n
j=1 is the to be solved n-dimensional column vector.

If the solution of the fuzzy linear system of Equation (1) (i.e., (2)) is regarded as a real
number vector, then the following such solution of the fuzzy linear system of equations
can be easily thought of.

Definition 2.1. A real vector x∗ = (x∗
j)

n
j=1 is called a real solution of fuzzy linear system

of Equation (1) (i.e., (2)) if Ax∗ = b.

However, in fact, to directly solve such solution of (1) is very difficult due to the
complexity of the division operation of fuzzy numbers which must be met in solving
process. So we should find other methods to solve the problem.

It is known that for U, V ∈ E, U = V ⇐⇒ [U ]r = [V ]r for any r ∈ [0, 1]. So we have
that Ax = b ⇐⇒ [Ax]r = [b]r for any r ∈ [0, 1]. So, if x ∈ Rn, we can turn the fuzzy
linear system of Equation (1) into:

[Ax]r = [b]r for any r ∈ [0, 1] (3)

Further, if x = (xj)
n
j=1 ∈ Rn, from Ax =

(∑n
j=1 aijxj

)m

i=1
, we have

[Ax]r =
[(∑n

j=1 aijxj

)m

i=1

]r

=
([∑n

j=1 aijxj

]r)m

i=1

=
(∑n

j=1[aijxj]
r
)m

i=1

=
(∑n

j=1[aij]
rxj

)m

i=1

= [A]rx

for any r ∈ [0, 1]. Therefore, if x ∈ Rn, we can equivalently turn the fuzzy linear system
of Equation (1) into a linear system of equations with interval number coefficients, i.e.,
we have:

Theorem 2.1. Let A = [aij]m×n ∈ Fm×n, b = (bi)
m
i=1 ∈ Fm. Then for x ∈ Rn, x is a

solution of fuzzy linear system of Equation (1) (i.e., (2)) if and only if for any r ∈ [0, 1],
x is a solution of

[A]rx = [b]r (4)

i.e., 
[a11]

rx1 + [a12]
rx2 + · · · + [a1n]rxn = [b1]

r

[a21]
rx1 + [a22]

rx2 + · · · + [a2n]rxn = [b2]
r

...
...

...
...

[am1]
rx1 + [am2]

rx2 + · · · + [amn]rxn = [bm]r

(5)
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Definition 2.2. Let A = [aij]m×n ∈ Fm×n, b = (bi)
m
i=1 ∈ Fm. For any r ∈ [0, 1],

Ȧ = [ȧij]m×n ∈ [A]r (i.e., Ȧ = [ȧij]m×n ∈ Rm×n and ȧij ∈
[
aij(r), aij(r)

]
, i = 1, 2, · · · ,m,

j = 1, 2, · · · , n) and ḃ =
(
ḃi

)m

i=1
∈ [b]r (i.e., ḃ =

(
ḃi

)m

i=1
∈ Rm and ḃi ∈

[
bi(r), bi(r)

]
,

i = 1, 2, · · · ,m), there exists a real vector x∗ =
(
x∗

j

)n

j=1
such that

Ȧx∗ = ḃ

i.e., 
ȧ11x

∗
1 + ȧ12x

∗
2 + · · · + ȧ1nx∗

n = ḃ1

ȧ21x
∗
1 + ȧ22x

∗
2 + · · · + ȧ2nx∗

n = ḃ2
...

...
...

...

ȧm1x
∗
1 + ȧm2x

∗
2 + · · · + ȧmnx

∗
n = ḃm

then we call x∗ =
(
x∗

j

)n

j=1
an r-solution of fuzzy linear system of Equation (1) (i.e., (2)),

and denote it as x
(
Ȧ, ḃ, r

)
=

(
xj

(
Ȧ, ḃ, r

))n

j=1
.

For A = [aij]m×n ∈ Fm×n, b = (bi)
m
i=1 ∈ Fm and r ∈ [0, 1], we denote x(r) =

min
{

x
(
Ȧ, ḃ, r

)
: Ȧ ∈ [A]r, ḃ ∈ [b]r

}
and x(r) = max

{
x

(
Ȧ, ḃ, r

)
: Ȧ ∈ [A]r, ḃ ∈ [b]r

}
.

Definition 2.3. Let A = [aij]m×n ∈ Fm×n, b = (bi)
m
i=1 ∈ Fm. For any r ∈ [0, 1], if x(r) =

min
{

x
(
Ȧ, ḃ, r

)
: Ȧ ∈ [A]r, ḃ ∈ [b]r

}
and x(r) = max

{
x

(
Ȧ, ḃ, r

)
: Ȧ ∈ [A]r, ḃ ∈ [b]r

}
exist, then we call [x(r), x(r)] an r-interval value solution of fuzzy linear system of Equa-
tion (1) (i.e., (2)), call the fuzzy set x̃ = (x̃j)

n
j=1 which is defined by

x̃j(t) =

 sup
{

r ∈ [0, 1] : t ∈
[
xj(r), xj(r)

]}
t ∈ ∪r∈[0,1]

[
xj(r), xj(r)

]
0 t ∈ ∪r/∈[0,1]

[
xj(r), xj(r)

] , j =1, 2, · · · , n

where, x̃j(t), j = 1, 2, · · · , n is a component of x(r), a fuzzy set solution of fuzzy linear
system of Equation (1) (i.e., (2)). Specially, if x̃ = (x̃j)

n
j=1 ∈ E, then we call it a fuzzy

number solution of fuzzy linear system of Equation (1) (i.e., (2)).

3. Solution of Trapezoid Fuzzy Number Linear System. For linear system of equa-
tions with trapezoid fuzzy number coefficients (where A = [aij]m×n ∈ Fm×n, b = (bi)

m
i=1 ∈

Fm and aij, bi ∈ ETra, i = 1, 2, · · · ,m; j = 1, 2, · · · , n), we have the following result.

Theorem 3.1. Let A = [aij]m×n ∈ Fm×n, b = (bi)
m
i=1 ∈ Fm be trapezoid fuzzy number ma-

trix and trapezoid fuzzy vector, respectively, i.e., aij, bi ∈ ETra for any i = 1, 2, · · · ,m and

j = 1, 2, · · · , n. If
{

x
(
Ȧ, ḃ, 1

)
: Ȧ ∈ [A]1, ḃ ∈ [b]1

}
and

{
x

(
Ȧ, ḃ, 0

)
: Ȧ ∈ [A]0, ḃ ∈ [b]0

}
are all nonempty, then x(1) = min

{
x

(
Ȧ, ḃ, 1

)
: Ȧ ∈ [A]1, ḃ ∈ [b]1

}
, x(1) = max

{
x

(
Ȧ, ḃ,

1

)
: Ȧ ∈ [A]1, ḃ ∈ [b]1

}
, x(0) = min

{
x

(
Ȧ, ḃ, 0

)
: Ȧ ∈ [A]0, ḃ ∈ [b]0

}
and x(0) = max{

x
(
Ȧ, ḃ, 0

)
: Ȧ ∈ [A]0, ḃ ∈ [b]0

}
satisfy x(0) ≤ x(1) ≤ x(1) ≤ x(0), and the trapezoid

fuzzy number F (x(0), x(1), x(1), x(0)) is the fuzzy number solution of fuzzy linear system
of Equation (1) (i.e., (2)).

Proof: From the definitions of x(1) and x(1), we see x(1) ≤ x(1). So to prove x(0) ≤
x(1) ≤ x(1) ≤ x(0), we only need to show x(0) ≤ x(1), x(1) ≤ x(0). In fact, it can
be seen from [A]1 ⊂ [A]0, [B]1 ⊂ [B]0 and the definitions of x(0), x(1), x(1), x(0).
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Therefore, trapezoid fuzzy number F (x(0), x(1), x(1), x(0)) can be indeed defined, and its
membership function is

F (x(0), x(1), x(1), x(0))(x) =


1, x ∈ [x(1), x(1)]

x−x(0)
x(1)−x(0)

, x ∈ [x(0), x(1))

x(0)−x
x(0)−x(1)

, x ∈ (x(1), x(0)]

0, x /∈ [x(0), x(0)]

From it, we can obtain that

F (x(0), x(1), x(1), x(0))(r) = x(0) + (x(1) − x(0))r

and

F (x(0), x(1), x(1), x(0))(r) = x(0) − (x(0) − x(1))r

In the following we show that for any r ∈ [0, 1],[
F (x(0), x(1), x(1), x(0))(r), F (x(0), x(1), x(1), x(0))(r)

]
,

i.e., [x(0) + (x(1) − x(0))r, x(0) − (x(0) − x(1))r] is an r-interval value solution of
fuzzy linear system of Equation (1) (i.e., (2)). Firstly, from x(0) ≤ x(1) ≤ x(1) ≤
x(0), we see that for any r ∈ [0, 1], (1 − r)x(0) + rx(1) ≤ (1 − r)x(0) + rx(1), i.e.,
x(0) + (x(1) − x(0))r ≤ x(0) − (x(0) − x(1))r, so [x(0) + (x(1) − x(0))r, x(0) − (x(0) −
x(1))r] is indeed a closed interval. In order to prove that [x(0) + (x(1) − x(0))r, x(0) −
(x(0) − x(1))r] is an r-interval value solution of fuzzy linear system of Equation (1)

(i.e., (2)), we only need to show that for any r ∈ [0, 1], Ȧ = [ȧij]m×n ∈ [A]r and ḃ =(
ḃi

)m

i=1
∈ [b]r, there exists x(Ȧ, ḃ, r) =

(
xj

(
Ȧ, ḃ, r

))n

j=1
with Ȧx

(
Ȧ, ḃ, r

)
= ḃ such that

x(0) + (x(1)−x(0))r = min
{

x
(
Ȧ, ḃ, r

)
: Ȧ ∈ [A]r, ḃ ∈ [b]r

}
and x(0)− (x(0)−x(1))r =

max
{

x
(
Ȧ, ḃ, r

)
: Ȧ ∈ [A]r, ḃ ∈ [b]r

}
. In fact, from the definitions of x(0), x(1), x(0) and

x(1), we see that there exist Ȧ(0) ∈ [A]0, ḃ(0) ∈ [b]0, Ȧ(1) ∈ [A]1, ḃ(1) ∈ [b]1, Ȧ(0) ∈ [A]0,

ḃ(0) ∈ [b]0 and Ȧ(1) ∈ [A]1, ḃ(1) ∈ [b]1 such that x(0) = x
(
Ȧ(0), ḃ(0), 0

)
, x(1) =

x
(
Ȧ(1), ḃ(1), 1

)
, x(0) = x

(
Ȧ(0), ḃ(0), 0

)
and x(1) = x

(
Ȧ(1), ḃ(1), 1

)
, i.e., Ȧ(0)x(0) =

ḃ(0), Ȧ(1)x(1) = ḃ(1), Ȧ(0)x(0) = ḃ(0) and Ȧ(1)x(1) = ḃ(1). �

4. Numerical Example. In the following, we give two practical examples to show the
application of Theorem 3.1.

Example 4.1. Consider fuzzy linear system (1, 2, 3, 4)x = (6, 7, 8, 9).
From the definitions of x(0), x(0), x(1), x(1), we have

x(0) = min
{

x
(
Ȧ, ḃ, 0

)
: Ȧ ∈ [1, 4], ḃ ∈ [6, 9]

}
x(0) = max

{
x

(
Ȧ, ḃ, 0

)
: Ȧ ∈ [1, 4], ḃ ∈ [6, 9]

}
x(1) = min

{
x

(
Ȧ, ḃ, 1

)
: Ȧ ∈ [2, 3], ḃ ∈ [7, 8]

}
x(1) = max

{
x

(
Ȧ, ḃ, 1

)
: Ȧ ∈ [2, 3], ḃ ∈ [7, 8]

}
We can get

x(0) =
3

2
x(0) = 9
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and

x(1) =
7

3
x(1) = 4

So, by Theorem 3.1 we know trapezoid fuzzy number
(

3
2
, 7

3
, 4, 9

)
is a fuzzy number solution

of the fuzzy linear system (equation) (1, 2, 3, 4)x = (6, 7, 8, 9).

Example 4.2. Consider fuzzy linear system[
(2, 3, 5, 6) (3, 4, 6, 7)

(1.5, 2, 4, 5) (3.5, 4, 5, 6)

] [
x1

x2

]
=

[
(8, 15, 42, 70)

(7, 12.5, 34, 59)

]
.

From the definitions of x(0), x(0), x(1), x(1), we have

x(0) = min

{
x

(
Ȧ, ḃ, 0

)
: Ȧ ∈

[
[2, 6] [3, 7]

[1.5, 5] [3.5, 6]

]
, ḃ ∈

[
[8, 70]
[7, 59]

]}
x(0) = max

{
x

(
Ȧ, ḃ, 0

)
: Ȧ ∈

[
[2, 6] [3, 7]

[1.5, 5] [3.5, 6]

]
, ḃ ∈

[
[8, 70]
[7, 59]

]}
x(1) = min

{
x

(
Ȧ, ḃ, 1

)
: Ȧ ∈

[
[3, 5] [4, 6]
[2, 4] [4, 5]

]
, ḃ ∈

[
[15, 42]

[12.5, 34]

]}
x(1) = max

{
x

(
Ȧ, ḃ, 1

)
: Ȧ ∈

[
[3, 5] [4, 6]
[2, 4] [4, 5]

]
, ḃ ∈

[
[15, 42]

[12.5, 34]

]}
so, {

6x1(0) + 7x2(0) = 8
5x1(0) + 6x2(0) = 7{
2x1(0) + 3x2(0) = 70

1.5x1(0) + 3.5x2(0) = 59{
5x1(1) + 6x2(1) = 15

4x1(1) + 5x2(1) = 12.5{
3x1(1) + 4x2(1) = 42
2x1(1) + 4x2(1) = 34

we can get {
x1(0) = −1
x2(0) = 2{

x1(0) = 27.2
x2(0) = 5.2

and {
x1(1) = 0

x2(1) = 2.5{
x1(1) = 8

x2(1) = 4.5

So, by Theorem 3.1 we know trapezoid fuzzy number vector

(
(−1, 0, 8, 27.2)
(2, 2.5, 4.5, 5.2)

)
is a

fuzzy number solution of the fuzzy linear system (equation)

[
(2, 3, 5, 6) (3, 4, 6, 7)

(1.5, 2, 4, 5) (3.5, 4, 5, 6)

]
(

x1

x2

)
=

(
(8, 15, 42, 70)

(7, 12.5, 34, 59)

)
.
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From the aboved two examples, if the fuzzy linear system of equations satifies the
definations of x(0), x(0), x(1), x(1), we can get the trapezoid fuzzy number solution by
Theorem 3.1. And the procedures as given may be an easy way to handle the trapezoid
fuzzy linear system of equations. The challenge will be how to handle the system of
equations when the coefficient matrix and the right hand are general fuzzy numbers.

5. Conclusion. In this paper, we gave the concept (Definition 2.1) of real solution of
fuzzy linear system of equation with fuzzy number coefficients, and equivalently translated
the fuzzy linear systems (equations) into interval number systems (equations) with interval
number coefficients by horizontal set (Theorem 2.1). Then we defined horizontal solution
of the fuzzy linear system (Definition 2.2), and proposed the concepts of fuzzy set solution
and fuzzy number solution of the fuzzy linear system via defining its horizontal interval
value solution (Definition 2.3). And then, we obtained a method of solving trapezoidal
fuzzy number linear systems (equations) (Theorem 3.1). At last, we gave two examples
(Examples 4.1 and 4.2) to show the application of proposed theory. In the future, we can
study the structure of the solutions of fuzzy linear systems (equations), and apply the
theories related to solutions of fuzzy linear systems (equations) to a wider range of areas.
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