
ICIC Express Letters ICIC International c⃝2017 ISSN 1881-803X
Volume 11, Number 1, January 2017 pp. 213–219

MINING WEIGHTED PATTERNS FROM SOFTWARE DYNAMIC
CALL GRAPH

Haitao He1,2, Jiandi Wang1,2,∗, Hao Wang1,2, Ruiling Zhang1,2

and Jiadong Ren1,2

1College of Information Science and Engineering
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province

Yanshan University
No. 438, West Hebei Ave., Qinhuangdao 066004, P. R. China

{haitao; jdren }@ysu.edu.cn; ∗Corresponding author: wjdysu@sina.com

Received June 2016; accepted September 2016

Abstract. As scale of software system and complexity of its structure are increasing,
it is inevitable to study the behavioral characteristics of software to guarantee software
safety and reliability. Finding representative patterns can help program maintainers de-
tect the exception and improve work efficiency. In this paper, an efficient method called
PSWP-Miner (projected-database based software weighted pattern mining) is proposed to
mine weighted patterns from software dynamic call graph. In the algorithm, we firstly
define the weight of each event in the software dynamic call graph. Secondly, a novel
structure called sequence identifier table (SIT) is put forward. It stores patterns and cor-
responding sequences identifiers information which contributes to reducing search space
when constructing projected database. Moreover, an effective upper bound model is pro-
posed to get more accurate weight of the pattern and pruning strategy is designed in the
algorithm to reduce number of candidates in the recursive mining process. At last, we
conduct experiments on both real and synthetic datasets. The experiment result demon-
strates impressive performance.
Keywords: Software dynamic call graph, Weighted pattern, Software behavior

1. Introduction. Like hardware failure, software failure can also lead to severe and even
fatal consequences [1]. Software behavior learning becomes a popular research in software
trustworthiness [2]. The function calling sequences in a scenario are represented as a
labeled, directed acyclic graph [3]. As a result, it is desirable to mine representative
software behavior patterns from software dynamic call graph which are important to
software maintenance and failure detection.

Software systems are composed of many interacting elements. A natural way to abstract
over software systems is to model them as graphs. [4] proposed a generative model of
software dependency graphs which synthesizes graphs whose degree distribution is close
to the empirical ones observed in real software systems. This model gave us novel insights
on the potential hidden rules of software evolution. [5] analyzed the dynamic function call
graph for the purpose of software fault defection. Such a software behavior graph reflects
the invocation structure of a particular program execution and we can learn software
behavior by analyzing the software call graph.

Park [6] found traversal patterns from graph traversals based on the graph structure
of the model. Therefore, the problem of finding representative patterns from graphs is
converted into finding frequent patterns from sequential database. We can use sequence
pattern mining algorithm to address software reliability issue. Lo et al. [7] proposed a
method to classify software behaviors based on past history or runs. Li et al. [8] came up
with a method which used the pattern position distribution as features to detect software
failure occurring through misused software patterns. One of the limitations of the above

213

214 H. HE, J. WANG, H. WANG, R. ZHANG AND J. REN

approaches for mining frequent patterns is that all items were treated uniformly. In many
cases, the item has different importance.

The most commonly used software quality assurance method is software testing. Cus-
tomarily, testing a software system involves a large set of test cases. The large number of
program execution traces that we thus obtain gives rise to a representative pattern mining
problem. Based on the above issues, a new algorithm PSWP-Miner has been designed to
mine weighted patterns from software dynamic call graph. In the method we propose a
new data structure called SIT (sequence identifier table) which is used to store the pattern
and the sequence identifier. By this structure, the mining procedure only needs to scan
the sequences in SIT without scanning the whole database, so the mining efficiency can
be improved. Moreover a new upper-bound model and projection based pruning strategy
are integrated into the algorithm. We evaluate the weight of the pattern through the
upper-bound model to avoid unnecessary pattern calculation. As a result, the candidates
number and memory consumption are reduced greatly. At last, we evaluate our algorithm
on a set of experiments.

The remaining paper is organized as follows. Section 2 gives the definitions. The pro-
posed algorithm PSWP-Miner with the sequence identifier table and pruning strategy is
stated in Section 3. Sections 4 and 5 present the experiments and conclusion respectively.

2. Problem Statement and Preliminaries. The dynamic call graph G is a directed
graph that represents calling relationships between program. Specifically, the nodes in G
represent functions. We can traverse G by Depth-First way to get function call path S
from root to leaf. These paths constitute a database SDB = {S1, S2, . . . , Sn}.

Definition 2.1. The weight of a node in G is denoted as w(v,G). The weight value
presents the importance of the function in G. It can be defined as follows.

w(v,G) =
n∑

i=1

w(viv)

wout(vi)
w(vi, G) (1)

w(viv) is the weight of edge viv. wout(vi) is the outdegree and it is defined as follows.

wout(vi) =
m∑

j=1

w(vi, uj) (2)

Definition 2.2. Software Traverse Path is a sequence of consecutive nodes from the root
node to leaf node in a dynamic call graph. It can be represented as S =< froot, froot+1, . . .,
fleaf >.

Definition 2.3. A pattern P =< e1, e2, . . . , en > is considered as a subsequence of STP
S =< s1, s2, . . . , sm > if there exist integers 1 ≤ i1 < i2 < i3 < i4 . . . < in ≤ m where
e1 = si1, e2 = si2 , . . . , en = sin.

Definition 2.4. The weight value of a pattern P in a sequence S is defined as follows.

wP =

|P |∑
i∈P∧P⊆S

wi

lP
(3)

where lP is the number of items in pattern P .

Definition 2.5. The actual weight support value of a pattern P is awsupp = wP× scount,
where scount is the number of sequences containing the pattern P .

Definition 2.6. If awsupP of a pattern P is no less than minimum weighted support
threshold (shorted as minwsup), P is called a weighted pattern.

ICIC EXPRESS LETTERS, VOL.11, NO.1, 2017 215

Definition 2.7. The weighted upper bound of a pattern P wubsP is the sum of maximum
weights of the sequence including P in a sequence database. That is,

wubsp =
∑

p⊆Seqy∧Seqy⊆SDB

mwsy (4)

Lemma 2.1. The weighted upper bound of a pattern keeps the downward-closure property.

Proof: Let p be a weighted upper-bound pattern and dp be the set of sequences
containing p in a sequence database. If p is a subsequence of p

′
, then p

′
cannot exist in

any sequence where p is absent. Therefore, the weighted upper bound wubsp of p is the
maximum upper-bound of weight value of p

′
. Accordingly, if wubsp is less than minimum

weighted support threshold, then p
′
cannot be a weighted upper-bound pattern.

Definition 2.8. A pattern p is called weighted upper bound pattern if wubsp is no less
than minwsup.

Lemma 2.2. The weighted sequential patterns WSPs is the subset of weighted upper
bound patterns WUBPs.

Proof: For a pattern p, if p is the weighted sequential pattern, awsupp is no less than
minimum weighted threshold. The wubsp is the upper bound of p and awsupp is less
than wubsp. In this case, we can conclude that wubsp is bigger than minimum weighted
threshold, so p is also the element of WUBPs.

3. The PSWP-Miner Algorithm. In this section, we describe the sequence identifier
table, the pruning strategy and the PSWP-Miner at length.

3.1. The sequence identifier table (SIT). The SIT structure contains two fields: the
pattern and the identifiers of sequences containing the pattern. By using the efficient
structure, the proposed algorithm only needs to scan the sequences in SIT without scan-
ning the whole database during the constructing projected database procedure. Take the
item c in Figure 1(a) as an example. When constructing projected database of c, we only
need to scan the Seq3, Seq4, Seq5 which contain item c.

3.2. Pruning strategy. The pattern not in weighted upper bound pattern set must
not be weighted pattern, so this kind of pattern can be pruned to reduce the memory
consumption of the algorithm. The proposed upper bound model holds downward-closure
property, so if the pattern is not weighted upper bound pattern, its subpattern cannot be
weighted frequent pattern. In this case, the weighted sequential pattern set is the subset
of weighted upper bound pattern set, so the pattern not in weighted pattern set must not
be weighted pattern.

3.3. The PSWP-Miner Algorithm. In PSWP-Miner procedure, it traverses the soft-
ware dynamic call graph to get the sequence database D in DFS way. Next, it initializes
SIT and select the max weight of each sequence in D. Then, it calculates awsupI and
wubsI of each item I to construct the WUBS1 which is the set of 1-length patterns and
outputs the weighted item. At the same time, the sid of sequence containing I is put into
SIT. After the prepared work, it begins to prune the item in the sequence not appearing
in WUBS1 according to the pruning strategy. When the revised sequence length is less
than 2, it will be deleted from database since it cannot generate the 2-pattern. Then
for each item I in WUBS1, the algorithm constructs its projected database and calls the
procedure Finding-WP.

In the Finding-WP procedure. It first calculates the wubsI of item I and produces
the set WUBSP which is a set of patterns consisting of prefix p and item I. The pruning
strategy is also used to prune the item not in WUBSP . Then, for each pattern in WUBSP ,
the algorithm constructs its projected database and calls Finding-WP recursively to find

216 H. HE, J. WANG, H. WANG, R. ZHANG AND J. REN

the weighted pattern. However, in procedure Finding-WP, we do not use the SIT structure
because of the high memory consumption. It is memory-consuming while the running time
is not reduced a lot when integrating SIT in the Finding-WP procedure.

Algorithm 1: PSWP-Miner

Input: software dynamic call graph G, a threshold minwsup
Output: weighted frequent patterns
1. Obtain all paths by traversing the graph G in DFS way and store these paths in D;
2. Initialize index table SIT to null;
3. Scan D to select the max weight of each sequence in D;
4. for each item I ∈ D do
5. calculate the wubsI and awsupI of I;
6. if wubsI > minutil
7. WUBS1← I and put item I and its identifiers of sequences into SIT;
8. if awsupI > minutil
9. Output I;
10. for each y-th sequence in D
11. Remove the items not in WUBS1;
12. if |Seqy| < 2
13. Remove Seqy from D;
14. for each item I in WUBS1

15. Construct PDBI reference to SIT;
16. Call Finding-WP(I, awsupI , PDBI);

Procedure: Finding-WP
Input: a prefix p and its weight support awsupp and its projected database SDBP ;
Output: weighted frequent patterns with p as its prefix pattern;
1. for each distinct item I in PDBP

2. calculate the wubsI and awsupI of I;
3. if wubsI > minwsup
4. p

′
= p∪I and WUBSP←p

′
;

5. awsupp
′ = (awsupp × |p|+ awsupI)÷ (|P |+ 1);

6. if awsupp′ > minwsup

7. Output p
′
;

8. for each y-th sequence in PDBP

9. Remove the items not in WUBSP ;
10. for each pattern p

′
in WUBSP

11. Construct PDBp
′ and call Finding-WP(p

′
, awsupp

′ , PDBp
′);

Example 3.1. As the instance in Figure 1(a). The minwsup is 0.5. And then we calculate
the weighted upper bound value and actual weight support value for each item according
to Figure 1(b). Item a, c, d, f, g, h, i will be put into the WUBS1 since their weighted
frequent upper bounds are no less than minwsup. Item a, c, f, g are weighted patterns,
while the item b and e are deleted from the sequences. The revised sequence Seq1 will be
removed since there is only one item a in the sequence. In the next, we will construct the
projected database for each item in WUBS1 and call the Finding-WP procedure to mine
weighted patterns recursively. The projected database of item a is shown in Figure 1(c).

ICIC EXPRESS LETTERS, VOL.11, NO.1, 2017 217

Figure 1. The instance

0.0071 0.0142 0.0213 0.0284 0.0355 0.0426 0.0497
0

360

720

1080

1440

1800

R
un

ni
ng

 ti
m

e(
s)

minimum weighted threshold

 PSWP-Miner
 WSpan

Figure 2. Running time
on cflow

0.008 0.016 0.024 0.032 0.040
20

25

30

35

40

45

50

55

60

R
un

ni
ng

 ti
m

e(
s)

minimum weighted threshold(%)

PSWP-Miner
WSpan

Figure 3. Running time
on T1014D100K

4. Experiment. In this section, PSWP-Miner is compared with WSpan for the run-
ning time and pruning efficiency. We have done extensive experiments on cflow and
T1014D100K [9]. In order to obtain relationships of function calls when software exe-
cuting, we track process of software executing and map relationships of function calls to
software dynamic call graph. We get experiment datasets cflow with the help of pvtrace,
Gephi and Graphviz on Linux.

4.1. Running time. We test the executing time of algorithm PSWP-Miner and WSpan
in various support thresholds shown in Figure 2 and Figure 3. In Figure 4 the number of
traversal sequences varies from 20000 to 100000. The result shows that PSWP-Miner is
faster than WSpan. This is mainly due to the fact that PSWP-Miner adopts SIT structure
and the pruning strategy. The time consuming is greatly decreased.

Figure 5 shows the running time with SIT structure. We can see from the result that the
running time is decreased after the algorithm adopts SIT structure. When constructing
the projected database, the algorithm reference to the identifiers stored in the structure.
As a result, excessive database scan can be avoided and the search space can be reduced
by this structure.

4.2. Pruning efficiency. As Figure 6 and Figure 7 shown, the number of candidates
number is decreasing by threshold decreasing and the difference between them is becoming
large. It could be observed that the number of candidates generated by PSWP-Miner is
always less than WSpan. The reason for this is that the PSWP-Miner adopts WUBS
upper bound model to obtain accurate upper-bounds of sequence weight for sequences
in the recursive mining process. The maximal weight in sequence is more suitable as

218 H. HE, J. WANG, H. WANG, R. ZHANG AND J. REN

26000 39000 52000 65000 78000 91000 104000
0

240

480

720

960

1200

R
un

ni
ng

 ti
m

e(
s)

Number of sequences

 PSWP-Miner
 WSpan

Figure 4. Running time
on cflow with different data-
size

0.01 0.02 0.03 0.04 0.05
20

25

30

35

40

45

50

55

60

R
un

ni
ng

 ti
m

e(
s)

minimum weighted threshold

Before SIT
 After SIT

Figure 5. Running time
on T1014D100K with SIT

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

N
um

be
r o

f c
an

di
da

te
s

minimum weighted threshold

 PSWP-Miner
 WSpan

Figure 6. Number of can-
didates on cflow

0.010 0.015 0.020 0.025 0.030 0.035 0.040
0

83000

166000

249000

332000

415000

498000

581000

664000

747000

N
um

be
r o

f c
an

di
da

te
s

minimun weighted threshold(%)

 PSWP-Miner
 WSpan

Figure 7. Number of can-
didates on T1014D100K

upper bound of any subsequence in a sequence when compared with WSpan algorithm.
Accordingly, a large number of unweighted candidates could be pruned effectively.

5. Conclusions. In this paper, we propose an efficient algorithm PSWP-Miner for min-
ing weighted patterns from software dynamic call graphs. A new structure SIT is inte-
grated into the algorithm to reduce the search space when constructing projected data-
base. Meanwhile, an effective upper bound model is designed to get more accurate weight
of the pattern and pruning strategy is designed in the algorithm to reduce number of
candidates when constructing projected database. We have demonstrated our proposed
algorithm on the synthetic and real datasets and the experimental results show the num-
ber of weighted frequent upper bound patterns is obviously less than that required by
the WSpan algorithm, and the proposed algorithm outperforms the WSpan algorithm in
terms of execution efficiency. In the future, we will optimize the structure of the algorithm
to reduce the memory consumption of the algorithm.

Acknowledgment. This work is supported by the National Natural Science Foundation
of China under Grant No. 61572420, No. 61472341 and the Natural Science Foundation
of Hebei Province P. R. China under Grant No. F2013203324, No. F2014203152 and
No. F2015203326.

ICIC EXPRESS LETTERS, VOL.11, NO.1, 2017 219

REFERENCES

[1] Y. Shi, M. Li, S. Arndt et al., Metric-based software reliability prediction approach and its applica-
tion, Empirical Software Engineering, pp.1-55, 2016.

[2] B. Zhao, Y. Wang, Z. Shan et al., Software behavior model based on functional slicing, International
Conference on Intelligent Systems Research and Mechatronics Engineering, 2015.

[3] T. T. Nguyen et al., Graph-based mining of multiple object usage patterns, ACM SIGSOFT, 2009.
[4] V. Musco, M. Monperrus and P. Preux, A generative model of software dependency graphs to better

understand software evolution, Eprint Arxiv, 2014.
[5] W. Masri, Fault localization based on information flow coverage, Software Testing Verification and

Reliability, vol.20, no.20, pp.121-147, 2009.
[6] H. C. Park, Mining weighted-frequent traversal patterns using graph topology, International Journal

of Computer Science and Network Security, 2014.
[7] D. Lo, H. Cheng, J. Han et al., Classification of software behaviors for failure detection: A discrim-

inative pattern mining approach, ACM SIGKDD, pp.557-566, 2009.
[8] C. Li, Z. Chen, H. Du et al., Using pattern position distribution for software failure detection,

International Journal of Computational Intelligence Systems, vol.6, no.2, pp.234-243, 2013.
[9] Frequent Itemset Mining Dataset Repository, http://fimi.ua.ac.be/, 2012.

