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Abstract. In this paper, the adaptive fault tolerant tracking control problem is studied
for an unmanned aerial vehicle (UAV) with actuator saturations and unknown exter-
nal disturbances. Firstly, the Takagi-Sugeno fuzzy models are established to represent
the nonlinear flight control systems of a UAV with actuator saturation and unknown
disturbances. Then, an adaptive normal tracking controller is designed using an online
estimator, in which a compensation control term is introduced so as to reduce the effect
of actuator saturation. Based on the normal tracking controller, a novel adaptive fault
tolerant control (FTC) scheme is presented in case of actuator loss-of-effectiveness fault.
Compared with the existing work, the FTC approach proposed in this paper does not rely
on any fault diagnosis unit and is easily applied in aerospace engineering. Finally, sim-
ulation results show the efficiency of the presented FTC scheme.
Keywords: Unmanned aerial vehicle, Adaptive controller, Flight control systems, Fuzzy
modelling

1. Introduction. Unmanned aerial vehicle (UAV) is a class of aircraft without a human
pilot onboard. The flight of a UAV, depending on flight control systems (FCS) that include
actuator, sensor and so on, is controlled either autonomously by onboard computers or
by the remote control of a pilot [1]. It is a quickly time-varying and strong coupling
characteristic of complex nonlinear system [2]. Because the flight control systems of UAV
are nonlinear systems, the traditional linear control method is not appropriate. However,
Takagi-Sugeno (T-S) fuzzy modelling is an effective tool which connects linear control
system with nonlinear one [3], which has been an active research topic. It can utilize
a series of local linearized models to realize the global approximation of an arbitrary
nonlinear smooth system function, and then the complex analysis and application of
nonlinear control system are greatly simplified, which is also its main merit. For the
above reason, a T-S fuzzy system describing nonlinear FCS of UAV is introduced in this
paper. Although some results about adaptive controller for T-S fuzzy systems have been
achieved in recent years, some public problems still exist, which are needed to solve, for
example, the controller design for T-S fuzzy system under unknown external disturbance
and actuator saturation simultaneously is a challenging public problem now. In [4-7], the
actuator saturation is not discussed, which certainly exists and needs solving in actual
FCS, so the fault accommodation results obtained above have some limitations in dealing
with two kinds of actual actuator faults simultaneously. In [8], the authors address the
problem of actuator saturation and loss of effectiveness faults for singular T-S fuzzy control
systems; however, the unknown disturbance is not considered, which is inevitable in the
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actual FCS of an unmanned aerial vehicle. So fault tolerant tracking controller design
problems of nonlinear system expressed by fuzzy models have not been thoroughly solved,
which is still a great challenge.

In this study, the results obtained in this paper can be regarded as the complements
of previous research. When actuator saturation occurs in an actual UAV, the adaptive
control scheme developed in this paper guarantees the asymptotical tracking of FCS.
Finally, simulation results show that our design approach has the favorable and robust
ability.

2. Problem Statement and Preliminaries. The flight control system model of UAV
is given by [1]:

ẋ = f(x) + g(x)u, y = Cx (1)

where x ∈ Rn denotes a state vector, u ∈ Rm denotes the control input vector, and the
output vector is y ∈ Rr.

The nonlinear system is linearized locally, which expresses the input-output relation of
the original system, and then Takagi and Sugeno theory is used to establish the fuzzy dy-
namic model. Consider a T-S fuzzy model which is composed of many fuzzy implications,
where every implication is equal to a linear state-space model. The ith fuzzy rule of the
T-S model of FCS is written as follows.

Plant Rule i: IF z1(t) is Mi1 and zq(t) is Miq THEN

ẋ = Aix + Biδ + Bdw, y = Cix

where i = 1, . . . , N , the fuzzy rule number is defined as N , the fuzzy set is Mij (j =
1, . . . , q), z(t) = [z1(t) . . . zq(t)]

T are the given variable, Ai ∈ Rn×n, Bi ∈ Rn×m and
Ci ∈ Rr×n.

The overall fuzzy FCS for UAV could be deduced as follows,

ẋ =
N∑

i=1

πi(z)(Aix + Biδ + Bdw), y =
N∑

i=1

πi(z)Cix

where

πi(z) =
k∏

i=1

Mij(z)

/ N∑
i=1

k∏
i=1

Mij(z), 0 ≤ πi(z) ≤ 1,
N∑

i=1

πi(z) = 1

with Mij(z) being the grade of membership of zj(t) among Mij and
∏k

i=1 Mij(z) ≥ 0.
Since there are different mechanical and physical restrictions on the control surfaces or

input amplitude, the output of actuator is denoted by the following sat(δ)

sat(δs) =

 δsmin, δs < δsmin

δs, δsmin ≤ δs ≤ δsmax

δsmax, δs > δsmax

(2)

where sat(δ) is the actual output of actuator with saturation constraints, δsmin (s =
1, . . . , m) and δsmax (s = 1, . . . ,m) are the minimum saturation level and maximum one
of the output of actuator, which is decided in advance, and δs is the control input, namely
output of controller, which will be designed.

Obviously, there is a difference between a real output of actuator provided and desired
control input, and the saturation error produced by actuator saturation is expressed as

∆δ = sat(δ) − δ (3)

In an actual control system, the saturation error ∆δ between an ideal input δ and a final
output for actuator sat(δ) provided is bounded. Thus, it is assumed that the following
inequality holds.

||∆δ|| ≤ h(x)σ∗ (4)
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where h(x) ∈ R1×m is a continuous known function and σ∗ ∈ Rm×1 is an unknown
parameter.

The overall fuzzy FCS for healthy UAV with unknown disturbances and actuator sat-
uration are represented as follows:

ẋ =
N∑

i=1

πi(z)(Aix + Bisat(δ) + Bdw), y =
N∑

i=1

πi(z)Cix (5)

where sat(δ) defined as (2) denotes actual output of actuator of the healthy FCS and
sat(δ) ∈ Rm.

Considering actuator faults, rewrite the faulty FCS for UAV with unknown disturbances
and actuator saturation as

ẋ =
N∑

i=1

πi(z)
(
Aix + Bisat

(
δF

)
+ Bdw

)
, y =

N∑
i=1

πi(z)Cix (6)

where δF is the input of a faulty FCS, sat(δF ) denotes an actual output of actuator of

the faulty FCS, and δF =
[
δF
1 , δF

2 , . . . , δF
m

]T
.

To formulate FTC design, the actuator fault model is introduced as follows,

δF = ρδ (7)

In this paper, the actuator fault is set to be a loss of effectiveness (LOE) of control surface,
ρ ∈ Rm×m is the unknown diagonal fault matrix with ρ1, ρ2, . . . , ρm and 0 < ρs ≤ 1.

From property of (3), the following equation is obtained,

sat
(
δF
s

)
= δF

s + ∆δF
s = ρsδs + ∆δF

s , ρs ∈
[
ρs, ρs

]
, 0 < ρs ≤ 1, ρs ≥ 1 (8)

where δF
s is control input, ∆δF

s (s = 1, 2, . . . , m) denotes a deviation between an actual
output of actuator and ideal control input. ρs is an unknown constant modeling the sth

control effectiveness element of m control surfaces or actuators. ρs, ρs denote the known
upper of ρs bound and lower one, respectively. It is worth noting that when ρs = ρs = 1,
the sth actuator fault does not occur.

Between the minimum and maximum bounds
[
ρs, ρs

]
, a set is defined as follows:

Nρ =
{
ρ : ρ = diag [ρ1, . . . , ρm] , ρs = ρs or ρs = ρs, s = 1, . . . , m

}
sat

(
δF
s

)
=

 δsmin, δF
s < δsmin

δF
s , δsmin ≤ δF

s ≤ δsmax

δsmax, δF
s > δsmax

It is widely accepted that the steady-state tracking error is accommodated by an integral
function of a controller. To design an adaptive controller with integral η(t) =

∫ t

0
(yr(s) −

y(s))ds, combining (6) and η(t), we obtain the following augmented system:[
η̇
ẋ

]
=

N∑
i=1

πi(z)

{[
0 −Ci

0 Ai

] [
η
x

]
+

[
0
Bi

]
sat

(
δF

)
+

[
I 0
0 Bd

] [
yr

w

]}
(9)

Let x̄ =
[
ηT , xT

]T
, and the above faulty system (9) can be rewritten as

˙̄x =
N∑

i=1

πi(z)
(
Aix̄ + Bisat

(
δF

))
+ Bdd (10)

Note that if the failure parameter ρ = I (I is an identity matrix), then no fault happens
and sat(δ) = sat

(
δF

)
.
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The required output y tracks the reference command yr under the condition of no steady
state error, namely

lim
t→∞

ε = 0, ε = yr − y, η =

∫ t

0

ε(s) ds (11)

Besides, the robust tracking control performance index γ for all d(t) is satisfied:∫ t

0

ηT (s)η(s)ds ≤ γ2

∫ t

0

dT (s)d(s)ds (12)

To proceed with the design of robust FTC for a faulty UAV with disturbances and
saturation constraints, two assumptions, in turn, are as follows.

Assumption 2.1. The loss of effectiveness (LOE) of the actuator is bounded; moreover,
there exists a positive scalar ϖ > 0 such that 0 < ||ρ|| < ϖ holds.

Assumption 2.2. The unknown disturbance w is bounded, namely, there exists a positive
scalar ς > 0 such that ||w|| < ς holds.

3. Main Results.

3.1. Normal control law design for a UAV with input saturation. For the healthy
flight control systems for UAV, one considers the following controller including an adaptive
variable u2:

δ =
N∑

j=1

πj(z)Kjx̄ + u2 (13)

where the normal control input is δ, the feedback gain matrix is Kj ∈ Rm×(k+n) to be
determined and Kj = [Kjη Kjx], and u2 ∈ Rm is used to compensate for the actuator
saturation.

Choose the following compensation control law

u2(t) = − BT
i Px̄(t)

||x̄T (t)PBi||
h(x)σ̂, ˙̂σs = −

N∑
i=1

πi(z)ϑsh
T
s (x)||x̄T PBi|| (14)

where σ̂ is an estimation of σ∗, ϑs > 0 is a learning coefficient determined by σ̂, and
h(x) = [h1(x), . . . , hm(x)].

Substituting (13) into (10), the controlled fuzzy system is described as

˙̄x =
N∑

i=1

N∑
j=1

πi(z)πj(z) (Ai + BiKj) x̄ +
N∑

i=1

πi(z) [Bi∆δ + Biu2] + Bdd (15)

3.2. Adaptive FTC design. Here, an FTC law δF utilizing adaptive fault compensation
controller is proposed

δF = δ + δC (16)

where δ is the normal control input term presented in (13), and δC is an adaptive fault
compensation factor so it is zero or does not lie on whether actuator faults occur.

Next, to acquire a necessary estimation of actuator faults, a target model is given:

˙̂x =
N∑

i=1

πi(z)[Aix̂ + Biρ̂r + Biu3], ŷ =
N∑

i=1

πi(z)Cix̂ (17)

where ρ̂ = diag [ρ̂1, . . . , ρ̂m] expresses the estimation of remaining effectiveness factor. To
implement given control objective, the input r ∈ Rm and u3 ∈ Rm are determined later.
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To design the suitable input δF , the output y of system (10) with actuator saturation
(4), unknown disturbances and actuator faults (7), can track the trajectory yr asymptot-
ically, and the augmented target model can be introduced[

˙̂η
˙̂x

]
=

N∑
i=1

πi(z)

{[
0 −Ci

0 Ai

] [
η̂
x̂

]
+

[
0
Bi

]
ρ̂r +

[
0
Bi

]
u3 +

[
I 0
0 0

] [
yr

w

]}
(18)

which can be expressed as the following form,

˙̄̂x =
N∑

i=1

πi(z)
[
Ai ˆ̄x + Bi (ρ̂r + u3)

]
+ D1d (19)

If one defines the state error vector of the augmented system as e = x̄− ˆ̄x and assumes a
fault tolerant control law

δF = r +
N∑

j=1

Fje (20)

From (10) and (19), the following equality can be obtained,

ė =
N∑

i=1

N∑
j=1

πi(z)πj(z)
[
(Ai + BiρFj) e + Biρ̃r + Bi

(
∆δF − u3

)
+ B̃dd

]
(21)

where ρ̃s = ρs − ρ̂s (s = 1, 2, . . . , m), B̃d = Bd − D1, Fj (j = 1, . . . , m) is a difference
control gain, which is designed to stabilize a T-S fuzzy system (21).

Let r = [r1, . . . , rm]T , Bi = [bi1, . . . , bim], and the augmented system (21) is described
by

ė =
N∑

i=1

N∑
j=1

πi(z)µj(z)

[
(Ai + BiρFj) e +

m∑
s=1

bisρ̃srs + Bi

(
∆δF − u3

)
+ B̃dd

]
(22)

The control term u3 is a compensation controller to accommodate the effect of actuator
saturation, which is given by

u3 = − BT
i Ge

||eT GBi||
h(x)ξ̂ (23)

where ξ̂ is the estimate of the unknown constant vector ξ.

Theorem 3.1. The augmented T-S fuzzy system (22) with γ-disturbance attenuation
is asymptotically stable, as long as there exist real matrices W ∈ Rm×(n+k), Wj > 0,
j = 1, . . . , N , symmetric positive matrices Q ∈ R(n+k)×(n+k) such that the conditions hold
as follows

Hii < 0,
2

N − 1
Hii + Hij + Hji < 0, 1 ≤ i ̸= j ≤ N (24)

with

Hij =

 AiQ + BiρWj + (AiQ + BiρWj)
T Bd Q

BT
d −γ2I 0

Q 0 −I


and ρ̂s, (s = 1, . . . , m) are determined on the basis of an adaptive estimation algorithm
as follows:

˙̂ρs = Proj[ρs,ρ̄s]
{
lse

T Gbisrs

}
=


0, if ρ̂s = ρ̄s, lse

T Gbisrs ≥ 0
or ρ̂s = ρs, lse

T Gbisrs ≤ 0∑N
i=1 πi(z)lse

T Gbisrs, otherwise

(25)
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where ls > 0 denotes a learning parameter to be designed by the minimum bound of fault
and maximum one

(
ρ̄s, ρs

)
, the projection operator is expressed by Proj{·}, which is to

project an estimation ρ̂s in the range
[
ρ̄s, ρs

]
, and an error control gain Fj is deduced by

Fj = WjQ−1.

Proof: Select the following Lyapunov function,

V = V1 + V2, V1 = eT Ge +
m∑

s=1

ρ̃2
s

ls
, V2(t) =

m∑
s=1

ξ̃T
s ξ̃s

τs

(26)

where G = Q−1 > 0, ξ̃s = ξs − ξ̂s (s = 1, . . . , m). τs > 0 is an adaptive gain.
Taking the derivative of V1 along the trajectory of the augmented system (22), it can

be deduced as

V̇1 =
N∑

i=1

N∑
j=1

πi(z)πj(z)eT
[
G(Ai + BiρFj) + (Ai + BiρFj)

T G
]
e

+ eT GBdd + dT BT
d Ge + 2

N∑
i=1

πi(z)eT GBi(∆δF − u3)

+ 2
m∑

s=1

N∑
i=1

πi(z)ρ̃se
T Gbisrs + 2

m∑
s=1

ρ̃s
˙̃ρs

ls

(27)

Considering that ρs is an unknown scalar, one can easily obtain that ˙̂ρs = − ˙̃ρs. Based on
(25), it is easily known that

ρ̃s
˙̂ρs

ls
=

N∑
i=1

πi(z)ρ̃se
T Gbisrs (28)

Meanwhile, choose the adaptive parameter update law

˙̂
ξs = −

N∑
i=1

πi(z)τs||eT GBi||hT
s (x) (29)

Substituting (28) and (29) into (27), the following inequality is obtained,

V̇ ≤
N∑

i=1

N∑
j=1

πi(z)πj(z)eT
[
G (Ai + BiρFj) (Ai + BiρFj)

T G
]
e + eT GBdd + dT BT

d Ge (30)

Here, the H-infinity tracking performance index γ is considered, and we have

V̇ (t) + eT e − γ2dT d =
N∑

i=1

N∑
j=1

πi(z)πj(z)

[
e
d

]T [
G(Ai + BiρFj) + (Ai + BiρFj)

T G + I GB̃d

B̃T
d G −γ2I

] [
e
d

]
(31)

If Fj = WjQ−1, Q = G−1, (31) < 0 is equivalent to the following (Ai + BiρFj)Q + QT (Ai + BiρFj)
T B̃d Q

B̃T
d −γ2I 0

Q 0 −I

 < 0 (32)

From (24) in Theorem 3.1, it is known that (32) < 0 is right, and the proof is completed.
For Lyapunov stability theory, when actuator faults in (7) and actuator saturation of (2)

occur, it is obvious from (31) that the augmented T-S fuzzy system (22) with disturbance
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attenuation level γ is asymptotically stable using the adaptive estimation law (25). Then,
a new adaptive FTC algorithm could be obtained

δF = r +
N∑

j=1

πj(z)Fje = − BT
i Px̄

||x̄T PBi||
h(x)σ̂ +

N∑
j=1

πj(z)
[
ρ̂−1Kjx̂ + Fje

]
= δ + δC

where r = − BT
i P x̄

||x̄T PBi||h(x)σ̂ +
∑N

j=1 πj(z)ρ̂−1Kjx̂, δ = − BT
i P x̄

||x̄T PBi||h(x)σ̂ +
∑N

j=1 πj(z)Kjx̄ and

δC =
∑N

j=1 πj(z)
[
(Fj − Kj) e + ρ̂−1(I − ρ̂)Kj ˆ̄x

]
.

4. Numerical Example. In this section, the efficiency of the presented controller is
demonstrated. The nonlinear flight control systems for UAV refer to [1], where x =
[ϕ, θ, V, α, β, p, q, r, h]T is state vector, which includes roll angle, pitch angle, airspeed,
attack angle, sideslip angle, roll rate, pitch rate, yaw rate and altitude, respectively.
δ = [δx, δar, δal, δfr, δfl, δer, δel]

T is input vector, which is the throttle, the right aileron and
left one, similarly, followed by flaps, the elevators. y = [ϕ, θ, β]T is defined as the output
vector, which denotes roll angle, pitch angle, sideslip angle. ρ = diag[ρ1, . . . , ρ7] is the
unknown scalar modeling the remaining control effectiveness of seven actuator channels.
Let the throttle and left flap actuator channels show faults simultaneously, and tf = 5s is
the occurrence time of faults.

The unknown disturbance w(t) = [0.01 cos t, 0, 0,−0.02 sin t, 0, 0.015 cos t]T and required
output command yr = [1, 1, 1]T . Consider that the nonlinearity of UAV flight control sys-
tems mainly comes from airspeed V and altitude h. In the airspeed range V ∈ [15, 50], we
assume that V has two related fuzzy sets {V = 15} and {V = 50}, and h has three related
fuzzy sets {h = 200}, {h = 1500} and {h = 3000}. The similar corresponding member-
ship functions are obtained as [9]. We choose six operating points: [V, h] ∈ {[15, 200],
[15, 1500], [15, 3000], [50, 200], [50, 1500], [50, 3000]}. Under the membership functions
and the six operating points, six plant rules and six control rules can be defined. All Ai

and Bi can be obtained by substituting the six operating points to f(x), g(x).
In this study, both the normal robust controller without FTC and the adaptive fault

accommodation approach developed in this paper are carried out, which are denoted by
the dashed line and solid one respectively. When we do not consider actuator satura-
tion, namely, ρ1 = 70%, ρ5 = 60%, △δ = 0. In Figure 1, the dashed line of normal
robust controller does not track the given command. However, the solid line of FTC
can asymptotically converge to 1. Moreover, the control input responses of the controller
with FTC are smaller than ones of the normal controller without FTC, namely, the less
energy is required by the tracking controller with FTC. To verify the adaptive capability
of the proposed approach in actuator saturation case, the control surface position lim-
its, namely actuator saturation levels, are defined as δ1min = 0 (deg), δi min = −5 (deg)
(i = 2, . . . , 7), and δi max = 5 (deg) (i = 1, . . . , 7). According to Figure 2, it is known that
the satisfactory tracking performance of FCS with the adaptive FTC, which compensates
the actuator faults and saturation, is obtained. At the same time, it is easily seen that
the outputs of FCS using the normal controller without FTC are unstable.

5. Conclusions. This paper addresses an FTC approach for flight control systems of
a UAV with actuator saturation and external disturbance. The T-S fuzzy models are
employed for representing FCS of a UAV. Considering actuator saturation constraints,
unknown LOE faults and unknown disturbance, a novel FTC strategy is developed by
adaptive theory. On the basis of Lyapunov technique, the stability of the T-S fuzzy FCS
is proved. Finally, the simulation illustrates the efficiency of the presented control scheme.
Another type of actuator fault will be considered in our research work in the future.
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Figure 1. Attitude angles and control input curves in actuator faulty case
(dashed line: without FTC; solid line: FTC)
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Figure 2. Attitude angles and input curves in actuator faulty and satu-
rated case (dashed line: without FTC; solid line: FTC)
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