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Abstract. Considering the problems of parameter uncertainties and load disturbance
appearing in induction motor drive systems, a discrete-time speed regulation control me-
thod is proposed in this paper. First, Euler method is used to describe the discrete-time
model of IMs. Next, fuzzy approximation technique is employed to approximate the un-
known nonlinear functions. Furthermore, the problem of explosion of complexity emerged
in traditional backstepping design is eliminated by dynamic surface control technique.
Finally, simulation results prove that tracking error can converge to a small area of the
origin and illustrate the effectiveness of the proposed approach.
Keywords: Discrete-time, Induction motor, Dynamic surface control, Backstepping,
Fuzzy approximation

1. Introduction. Induction motors (IMs) are intensively used in industrial applications
because of their low maintenance, high performances and ruggedness, which stimulate
research in advanced motion control to achieve high performance. However, it is still
a challenging problem to control IMs to get the perfect dynamic performance owing to
that its dynamic model is usually multivariable, coupled and highly nonlinear. What is
more, it can be easily influenced by parameter variations and external load disturbances.
To solve the above problems, many control methods have been proposed for IMs, such
as sliding mode control [1], Hamiltonian control [2], dynamic surface control [3], back-
stepping [4] and some other control methods [5, 6]. Unfortunately, all those methods
mentioned above were developed for continuous-time IM drive systems and implemented
on digital devices. Nonlinear discrete-time control design techniques for IM drive system
were seldom discussed. The discrete-time control system is regarded as typically superior
to the continuous-time control system in terms of stability and achievable performances
[7].

The backstepping control is considered to be one of the popular techniques for con-
trolling the nonlinear systems with linear parametric uncertainty. However, during the
backstepping design procedure, the problem of “explosion of complexity” arises. To over-
come this issue, a dynamic surface control (DSC) method was proposed by introducing
a first-order filtering of the virtual input at each step of the conventional backstepping
approach. However, the DSC technique has not been applied to nonlinear discrete-time
systems with unknown parameters. Recently, fuzzy-approximation [8] method has at-
tracted great attention in induction motor drive systems because of its inherent capability
for modeling and controlling highly uncertain, nonlinear and complex systems.

From the above observations, the adaptive fuzzy DSC control method is proposed to
speed regulation for IMs based on discrete-time technique in this paper. The simula-
tion results are provided to demonstrate the effectiveness of the proposed discrete-time
adaptive speed tracking control method.
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The rest of the paper is organized as follows. Section 2 describes the mathematical
model of IM drive system. The dynamic surface adaptive backstepping control is designed
in Section 3. Section 4 shows stability analysis. In Section 5, the simulation results are
given. Finally, some conclusions are presented.

2. Mathematical Model of the IM Drive System. Induction motor’s dynamic math-
ematical model can be described in the well known (d-q) frame as follows [9]:
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where σ = 1 − L2
m

LsLr
. ω, Lm, np, J , TL and ψd denote the rotor angular velocity, mutual

inductance, pole pairs, inertia, load torque and rotor flux linkage, respectively. id and iq
stand for the d-q axis currents. ud and uq are the d-q axis voltages. Rs and Ls mean the
resistance, inductance of the stator. Rr and Lr denote the resistance, inductance of the
rotor. By using the Euler method, the dynamic model of IM drivers can be described by
the following equations:
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The control objective is to design an adaptive fuzzy controller such that the state
variable xi(k) (i = 1, 2, 3, 4) follows the given reference signal xid(k) and all the closed-
loop signals are bounded. The approximation property of the fuzzy logic systems (FLSs)
can be found in [2]. By using the FLSs, given a compact set z = [z1, z2, . . . , zn] ∈ Ωz,
the unknown smooth function φ(z) can be expressed as φ(z) = W TS(z) + ε(z), where

W ∈ RN is the optimal parameter vector, S(z) =
[
s1(z), s2(z), . . . , sN(z)

]T
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]
< 1. And ε(z) ∈ R is the approximation error

satisfying |ε(z)| ≤ ε̄ with the constant ε̄ > 0. µϕl
i
(zi) is the fuzzy membership function

and ϕl
i is fuzzy sets in R.
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3. Adaptive Fuzzy Controller Design with Backstepping. In this section, we will
design the controllers for the approximate discrete-time IM drive system via backstepping.

Step 1: For the reference signal x1d, define the tracking error variable as e1(k) = x1(k)−
x1d (k). From the first equation of (1), we can obtain e1(k+1) = x1(k)+a1∆tx2(k)x3(k)−
a2∆tTL−x1d(k+1). Choose the Lyapunov function candidate as V1(k) = 1

2
e2
1(k), and then
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2

[
x1(k) + a1∆tx2(k)x3(k) − a2∆tTL−

x1d(k + 1)
]2 − 1

2
e21(k). Construct the virtual control law α1(k) as

α1(k) =
[−x1(k) + x1d(k + 1) + a2∆tTL]

a1∆tx3(k)
(3)
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Step 2: From the second equation of (1), we can obtain e2(k+1) = f2(k)+ b5∆tuq(k),

where f2(k) = (1+b1∆t)x2(k)+b2∆tx1(k)x3(k)−b3∆tx1(k)x4(k)−b4∆t
x2(k)x4(k)
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−α1d(k+
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differencing V2(k) yields

∆V2(k) =
1

2
[f2(k) + b5∆tuq(k)]

2 − 1

2
e22(k) + ∆V1(k) (6)

By using the approximation property of the FLS, for any given ε2 > 0, there exists
a fuzzy logic system W T

2 S2(z2(k)) such that f2(k) = W T
2 S2(z2(k)) + ε2 where ε2 is the

approximation error. At this present stage, choose the following control law uq(k) and
adaptive law η̂2(k + 1) as
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η̂2(k + 1) = η̂2(k) + γ2∥S2(z2(k))∥e2(k + 1) − δ2η̂2(k) (8)

where γ2 and δ2 are positive paramenters. In general, W2 is bounded and unknown and
let ∥W2∥ = η2 where η2 > 0 is unknown constant. Let η̂2(k) estimate η2 and the estimate
error is η̃2(k) = η2 − η̂2(k).

By using Equality (7), we can obtain
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Step 3: For the reference signal x3d, define the tracking error variable as e3(k) =
x3(k)−x3d(k). From the third equation of (1), we can obtain e3(k+1) = (1 + c1∆t)x3(k)+
b4∆tx4(k)−x3d(k+1). Choose the Lyapunov function candidate as V3(k) = 1

2
e23(k)+V2(k).

Furthermore, differencing V3(k) yields
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Construct the virtual control law α2(k) as
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ς2 [α2d(k + 1) − α2d(k)] + ∆tα2d(k) = ∆tα2(k), α2d(0) = α2(0)

Using (8), ∆V3(k) can be rewritten as:
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with e4(k) = x4(k) − α2(k).
Step 4: From the fourth equation of (1), we have e4(k+1) = f4(k)+ b5∆tud(k), where
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Similarly, the fuzzy logic system W T
4 S4(z4(k)) is utilized to approximate the nonlinear

function f4(k) such that for given ε4 > 0, f4(k) = W T
4 S4(z4(k)) + ε4. Now choose the

following control law ud(k) and adaptive law η̂4(k + 1) as
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where γ4 and δ4 are positive paramenters. In general, W4 is bounded and unknown and
let ∥W4∥ = η4, where η4 > 0 is an unknown constant. Let η̂4(k) estimate η4 and we have
η̃4(k) = η4 − η̂4(k). Substituting (13) into (12) results in
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4. Stability Analysis. To address the stability of the closed-loop system, choose the
Lyapunov function candidate as V (k) = V4(k) + 1
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By using (4), we can obtain
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where κi(k) = αi(k) − αi(k + 1). As defined before, it can be computed that
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By choosing a suitable parameter P and sampling period ∆t, we can get P
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k→∞

∥x1(k) − xd (k) ∥ ≤ σ where σ is a small positive constant.

5. Simulation Results. To illustrate the effectiveness of the proposed control approach,
the simulation is run for IM with the parameters: J = 0.0586Kg·m2, Rs = 0.1Ω, Rr =
0.15Ω, Ls = Lr = 0.0699H, Lm = 0.068H, np = 1. The reference signal is chosen as

x1d(k) = 2cos(∆tkπ/2) with the load torque being TL =

{
0.5, 0 ≤ k ≤ 2000
1.0, k ≥ 2000

. The

sampling period is chosen as ∆t = 0.0025s considering the system efficiency and control
performance. The values of the control parameters are selected as δ2 = 0.87, δ4 = 0.0021,
ς1 = 0.0025, ς2 = 0.002, γ2 = 0.98 and γ4 = 0.25.

Simulation results in Figures 1-4 are obtained by using the proposed scheme. The
trajectories of x1(k) and x1d(k) are given in Figure 1, in which the solid line represents
x1(k), the dashed line represents x1d(k). It can be observed that the system output can
track the desired reference signal well. The dynamics of the tracking error is shown in
Figure 2 and it can be seen that the tracking error converges to a small neighborhood
of the origin. The trajectories of uq(k) and ud(k) are shown in Figure 3 and Figure 4.
From Figures 3 and 4, we can seen that ud(k) and uq(k) are bounded into a certain area.
The controllers can guarantee the robustness against the system parameter variations and
load disturbances. In this simulation, it should be remarked that when the load torque
changes, the controllers can cope with the sudden change of the load torque and provide
a fast tracking response.
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Figure 1. x1 and x1d
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6. Conclusion. In this paper, based on DSC backstepping technique, fuzzy adaptive
discrete-time method is proposed to speed regulation control for IM drive system. The
designed controllers guarantee that the tracking error converges to a small neighborhood
of the origin. Simulation results are provided to demonstrate the effectiveness and ro-
bustness of the proposed approach. Future research will focus on adaptive fuzzy control
of permanent magnet synchronous motors based on dynamic surface control.
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