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Abstract. Indoor Air Quality (IAQ) along with the call for energy-saving has become a
hot research topic in recent years. Low ventilation rate consumes less energy but may re-
sult in poor air quality, causing health issues for occupants in the long run. Conventional
ventilation strategies often result in imbalance in multiple zones served by one HVAC
system considering different number of occupants in each zone. This paper presents a
model-based control of CO2 concentration for multi-zone ACB air-conditioning systems
aiming at achieving a high IAQ level. A multi-zone CO2 concentration model is estab-
lished which takes account of the coupling between neighbour zones. Genetic Algorithm
(GA) and Least Squares Method (LSM) are used for parameter identification of the CO2

model. A control strategy is proposed for the intake airflow rate so that the desired level
of the CO2 concentration can be achieved in the presence of varying number of occupants.
Simulations are given to validate the proposed control design.
Keywords: IAQ, Multi-zone room, CO2 concentration, Model-based control, Intake
airflow rate

1. Introduction. Heating, Ventilation and Air Conditioning (HVAC) system plays an
important part in buildings and provides a comfortable and healthy environment to peo-
ple. The HVAC consumes more than 50% of the total building energy consumption. Many
studies have been performed aiming to save the energy usage of the HVAC systems since
the world energy crisis in the 1970s [1, 2, 3]. With many of the steps having been taken
to reduce power consumption, the level of human comfort decreased significantly. And
with the term sick building syndrome used to describe people experiencing acute health
problems related to indoor poor air quality being introduced, researchers started to pay
attention to the IAQ [4]. The outdoor air ventilation rate affects both IAQ and the en-
ergy consumption [5]. Low ventilation rate can directly decrease the energy consumption
but may also bring about poor indoor quality since air pollutant cannot be discharged
promptly. Hence the research of ventilation efficiency is important in order to achieve a
desirable IAQ while minimizing energy cost.

There are many existing works using CO2 concentration for evaluating the IAQ and
ventilation. Škrjanc and Šubic [6] proposed an internal model control system with an
internal loop, which constantly checks indoor CO2 concentration, and adjusts the air flow
accordingly to achieve the desired CO2 concentration. Compared with the PI controller,
the internal model control results in a better CO2 concentration. Lu et al. [7] apply the
Maximum Likelihood Estimation to estimate space air change rates and further predict
transient CO2 generation rates for an individual space in a great confidence in commercial
buildings. In order to be easily adopted for some complex ventilation systems, a novel
coupled-method is presented to estimate CO2 generation rates. Xu et al. [8] also use the
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CO2 as a direct parameter for demand-controlled ventilation since CO2 is a contaminant
of concern in rooms, and present a model-based optimal ventilation control strategy for
multi-zone VAV air-conditioning systems aiming at optimizing the intake air flow rate
and keeping the IAQ level high with low energy consumption. The number of detected
occupants in each zone is used to correct the air flow rate of over-ventilation zones. Model
predictive control strategies are used to save energy for HVAC systems.

Considering a multi-zone ACB based air-conditioning system, the requirement of airflow
rate of each zone may differ greatly due to the different number of occupants. If we only
adjust the intake airflow rate based on the total number of occupants, it may easily result
in over-ventilation in some zones while under-ventilation in other zones [9]. In this paper,
occupant numbers in different zones are considered when adjusting the intake airflow rate
for each zone. Note that the CO2 concentration in a zone can be affected by those of its
neighbouring zones. It is well known that indoor temperature also depends heavily on
the intake airflow rate in conventional air-conditioning system such as VAV all-air HVAC
systems. So if we try to adjust the ventilation rate to control the CO2 concentration, it
may affect indoor temperature. In this regard, we design a CO2 concentration controller
for HVAC systems with ACB terminals where the indoor temperature can be controlled
by both air and water, which means we can control the indoor CO2 concentration by
adjusting the intake airflow rate while controlling the water flow rate to achieve thermal
comfort in case when the intake airflow rate cannot meet the requirement of temperature.

In the paper, we firstly present an indoor CO2 concentration model for multi-zone
ACB air-conditioning systems in Section 2. In Section 3, we try to estimate the model
parameters by using the GA [10] and LSM, where the optimal values computed by GA
will be used as the initial values for the LSM algorithm. We design a controller for the
developed bilinear model in Section 4. We introduce the experimental data acquisition
process and identification results in Section 5. Some simulations are provided to validate
the designed controller in Section 6. Finally, some concluding remarks are shown in
Section 7. Compared with [11], this paper adds some experiment results and enriches the
corresponding content.

2. System Model. As occupancy of rooms is time-varying, a ventilation system with
fixed airflow rate cannot react to the change of the number of the occupants. This paper
aims at keeping the CO2 concentration at a desired level by the regulation of intake airflow
[12]. The model describes the change of CO2 concentration in dependence of the airflow
from the ventilation system, the influence of neighbour zones and the amount of CO2

concentration generated per person in the room [13]. The CO2 concentration dynamics
can be given by

vi
dCi(t)

dt
= Qoi(C0(t) − Ci(t)) +

N∑
j=1

Qij(Cj(t) − Ci(t)) + G(t) (1)

where vi is the volume of zone i, C0(t) is defined as the supply CO2 concentration, which
is usually viewed as a constant C0; Ci(t) denotes the CO2 concentration of zone i at time
t, Cj(t) is the CO2 concentration of zone j at time t, N is the number of neighbouring
zones of zone i. Qoi is the volumetric airflow rate into zone i, Qij is the volumetric airflow
rate from zone j into (and out of) zone i, and G(t) denotes the CO2 generation rate in
zone i at time t, namely CO2 concentration exhaled by occupants in zone i.

G(t) can be expressed as

G(t) = S ∗ N(t) (2)

where S denotes the average CO2 generation rate of an occupant, N(t) is the number of
occupants in each zone at time t.
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When CO2 generation rate G(t) equals zero, Equation (1) can be expressed as:

vi
dCi(t)

dt
= Qoi(C0(t) − Ci(t)) +

N∑
j=1

Qij(Cj(t) − Ci(t)) (3)

To accurately predict the dynamic responses of process over the period [kT, (k + 1)T ),
k ≥ 0, the sampling period T is divided into m simulation steps of the time step ∆tsim.
During a small simulation time step, supply air flow rate outside CO2 concentration and
air flow rate between neighbors are assumed to be constant. Therefore, Equation (3)
can be expressed approximately as below by replacing the derivative terms approximately
with finite difference terms,

vi
Ci(k + 1) − Ci(k)

∆tsim
= Qoi(C0 − Ci(k)) +

N∑
j=1

Qij(Cj(k) − Ci(k)) (4)

The obtained Equation (4) can be used to estimate the airflow rate from outside and
neighbour zones in this study.

Figure 1. Schematic diagram of HVAC system with ACB terminals

3. Parameter Identification of Dynamic Zone Model. Having derived a CO2 con-
centration model for a zone, we try to find optimal parameters that best fit with the
experimental data. In this paper, optimal parameters are found by using GA and LSM.
According to Equation (1), the parameters are Qoi and Qij(j = 1, . . . , N), and S in Equa-
tion (2). GA is a search method by using natural selection and survival of the fit test in
the biological word. The objective function o of Equation (4) employs sum square errors.

o(Qoi, Qij(j = 1, . . . , N)) =
m∑

k=1

(
C

′

ik(t) − Cik(t)
)2

where m is the sample data numbers, Cik and C
′

ik are the fitted and measured zone CO2

concentration respectively, and all the sample data are added together. We introduce a
fitness function f as follows, which is the reciprocal of the objective function.

f(Qoi, Qij(j = 1, . . . , N)) =
1

o(Qoi, Qij(j = 1, . . . , N))

The fitness function is responsible for performing this evaluation and returning a pos-
itive integer number, or fitness value. The value is then used in a process of natural
selection to choose which potential solutions will continue on to the next generation, and
which will die out, reflecting how optimal the solution is: the higher the number, the
better the solution. The optimal parameters computed by GA are then used as the initial
values of LSM, which not only reduces the computation, but also makes the model better
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fit with the measured data. For the CO2 concentration model, Qoi and Qij(j = 1, . . . , N),
can be firstly identified according to Equation (4), which can be expressed as follows,

Ci(k + 1) = Ci(k) +
∆tsim

vi

((C0 − Ci(k))Qoi +
N∑

j=1

(Cj(k) − Ci(k))Qij) + nk

where nk denotes the kth measurement noise. Observe that

Ci(k) − Ci(k − 1) =
∆tsim

vi

((C0 − Ci(k − 1))Qoi

+
N∑

j=1

(Cj(k − 1) − Ci(k − 1))Qij) + nk−1 (k > 1)

We adopt the notation X = [Ci(2)−Ci(1), Ci(3)−Ci(2), . . . , Ci(k)−Ci(k− 1)]T as the
(k − 1) × 1 observed vector, H = [HT

1 , HT
2 , . . . , HT

k−1]
T as the (k − 1) × (N + 1) observed

matrix, where Hm = [C0−Ci(m), C1(m)−Ci(m), . . . , CN(m)−Ci(m)] (m = 1, . . . , k−1),
Q = [Qoi, Qi1, . . . , QiN ]T as the (N + 1) × 1 estimated vector, n = [n1, n2, . . . , nk−1]

T as
the (k−1)×1 observed noise vector. Then the model can be expressed in matrix equation
as

X = HQ + n

The estimated Q̂ minimizes the performance function

J
(
Q̂

)
=

(
X − HQ̂

)T (
X − HQ̂

)
(5)

Because the room has no occupant at night after 1:00am, G(t) can be considered as
zero. Then Qoi and Qij(j = 1, . . . , N) can be obtained by using the data at that time.
After Qoi and Qij(j = 1, . . . , N) have been estimated, we try to estimate parameter S in
Equation (2) and further to obtain G in every sampling period by using the discretized
Equation (1). N(t) can be obtained by using the WiFi detection system [14]. We estimate
S to improve fitting precision.

4. Controller Design. According to the bilinear Equation (1), the change of CO2 con-
centration can be controlled by Qoi. This means Qoi is the input and Ci(t) is the controlled
variable [15]. G(t) can be derived from the detected occupants number, so we can define
Q

′
oi as,

Q
′

oi = Qoi +
G(t)

C0 − Ci(t)
(6)

As G(t)
C0−Ci(t)

can be known at every time t, then Q
′
oi can be viewed as system input which

has the same meaning with Qoi. Then Equation (1) can be rewritten as,

vi
dCi(t)

dt
= Q

′

oi(C0 − Ci(t)) +
N∑

j=1

Qij(Cj(t) − Ci(t)) (7)

Here we introduce xi(t) = Ci(t) − C∗, C∗ denotes the expected CO2 concentration in
the room, where xi(t) means the difference between the reference value and the observed
CO2 value at time t. Then Equation (7) can be rewritten as

vi
dxi(t)

dt
= Q

′

oi(C0 − C∗ + C∗ − Ci(t)) +
N∑

j=1

Qij(Cj(t) − C∗ + C∗ − Ci(t))

= Q
′

oi(C0 − C∗ − xi(t)) +
N∑

j=1

Qij(xj(t) − xi(t)) (8)
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In this system, indoor CO2 concentration is always greater than outdoor CO2 concen-
tration because of exhaling of indoor occupants. So the initial condition can be given as
Ci(0) > C0. In fact, when Ci(0) ≤ C0, we do not need to use controller to control indoor
CO2 concentration any more. However, owing to the indoor occupants, ∃t0, Ci(t0) > C0,
then we can view t0 as the virtual initial time.

Theorem 4.1. Consider the system in bilinear Equation (1), let the controller be given
by

Qoi = Ci(t) − C∗ − G(t)

C0 − Ci(t)
(9)

Then all the states asymptotically converge to zero.

Proof: Firstly as xi(0) > C0 −C∗, for any i, once xi(t) approaches C0 −C∗, which can

be viewed as the smallest state, namely xj(t) ≥ · · · ≥ xi(t); so
∑N

j=1 Qij(xj(t)−xi(t)) ≥ 0,

then from Equation (8), dxi(t)
dt

≥ 0. So xi(t) ≥ xi(0). That is to say, xi(t) will never reach
C0 − C∗ in finite time.

We set X = [x1, . . . , xn]T . Then the following Lyapunov functional candidate is defined
to assess the convergence to the origin:

V (t) =∥ X ∥∞
V (t) can be written as V (t) = max{|x1|, . . . , |xn|}. In the following, we will prove that
the derivative of V (t) as V̇ (t) is negative when t ≥ 0. Firstly, we assume ∥ X ∥∞= |xi|,
then |xi| ≥ · · · ≥ |xj| ≥ 0. We denote sign[.] the signum function. According to Equation
(8), we see that

V̇ (t) =
d|xi(t)|

dt
= sign[xi(t)]

dxi(t)

dt

=
1

vi

sign[xi(t)]

[
xi(t)(C0 − C∗ − xi(t)) +

N∑
j=1

Qij(xj(t) − xi(t))

]
It is noted that xi(t) > C0−C∗, and sign[xi(t)]xi(t) = |xi|. So 1

vi
|xi|(C0−C∗−xi(t)) ≤ 0.

As |xi(t)| ≥ · · · ≥ |xj(t)| ≥ 0, when xi(t) < 0,
∑N

j=1 Qij(xj(t) − xi(t)) ≥ 0, Then it

follows that V̇ (t) < 0; when xi(t) ≥ 0,
∑N

j=1 Qij(xj(t) − xi(t)) ≤ 0, we can also get that

V̇ (t) ≤ 0. V̇ (t) = 0; therefore, the states will converge to the region where, i.e.,

0 = xi(t)(C0 − C∗ − xi(t)) +
N∑

j=1

Qij(xj(t) − xi(t))

As |xi(t)| ≥ · · · ≥ |xj(t)| ≥ 0, xj(t) − xi(t) ≤ 0. So xi(t) ≤ 0, and combining with
xi(t) ≥ 0, we obtain xi(t) = 0.

It is concluded that V̇ (t) < 0 almost everywhere, that is V̇ (t) = 0 happens only if
xi(t) = 0. Hence, the system is of asymptotic convergence. �

In this study, we use this controller into multi-zone ACB air-conditioning systems,
occupant numbers in different zones are considered when adjusting the intake airflow rate
for each zone, and CO2 concentration in a zone affected by those of its neighbouring
zones are also considered, which can effectively improve IAQ when the rapid acceleration
of indoor persons and realize energy conservation to some extent.

5. The Experimental Data Acquisition. The multi-zone ACB air-conditioning sys-
tem is illustrated in Figure 2. The lab was divided into four zones corresponding to four
ACB terminals. CO2 sensors were put at the places indicated by circle as shown in Figure
2 and fixed on stands with height of 1.5m.
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Figure 2. Test site and sensor layout of multiple zones

Figure 3. CO2 concentrations in each zone

Refer to ASHRAE standard, and CO2 at very high concentration levels can pose a
health risk. CO2 concentration almost never reaches these levels in most buildings, how-
ever, is generally greater than outdoor air CO2 concentrations because of exhaling CO2 of
occupants. Outdoor air CO2 typically ranges from 300ppm to 500ppm. In this paper, we
measure outdoor CO2 concentration as 470ppm which can be used as supply CO2 concen-
tration. We can see from Figure 3 that indoor CO2 concentration in any zone is greater
than outdoor CO2 concentration due to the presence of human beings. From Figure 4 we
know that the numbers of occupants vary in four zones. Occupants start to come around
8:30am and the CO2 concentration in each zone tracks this trend well. We also notice
that during lunch time around 12:00am and off duty 5:00pm, sharp transitions happen,
where CO2 concentrations decrease accordingly. There is no occupant in the lab during
night time so CO2 concentration trends are relatively more stable than that of daytime.

After acquiring the experimental data, we carry out parameter identification of zone 1
and zone 2, and the fitting results are shown in the following figures. Figure 5 shows the
fitting result of Q

′
o1, Q

′
o2 and Q12. The data after 1:00am are chosen and Equation (4) is

used as fitting function. Then we use the discretized form of Equation (1), Equation (2)
and the obtained values of Q

′
o1, Q

′
o2 and Q12 to estimate S. The occupant numbers from

8:30am to 3:45pm are collected every 15 minutes. We can see from Figure 6 that the CO2

concentration of zone 1 changes according to the occupants number. By using the pro-
posed identification method, the estimated value of S is obtained. Now we try to predict
the CO2 concentration of zone 1 by using the obtained parameter values to demonstrate
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Figure 4. Occupants number in each zone

Figure 5. The fitting result of Q
′
o1, Q

′
o2 and Q12

Figure 6. The fitting result of S
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Figure 7. Prediction of CO2 concentration by using the identified parameters

the effectiveness of the estimated model. The occupants number and measured CO2 con-
centration of zone 1 on another day are collected. The comparison between the predicted
concentration and the measured one can be seen from Figure 7. The model can fit the
real CO2 concentration well as shown in the figure, which also reflects the change of CO2

concentration according to the occupants number accurately. So the identified parameters
can be used in our experiments, the estimated Q12 and S can be used in simulations, Q

′
o1,

Q
′
o2 are viewed as system input and we adjust them to keep CO2 to the expected value.

6. Simulations. According to IAQ guidelines in EU standard, CO2 concentration be-
tween 485ppm and 875ppm is the lowest threshold which may make 5.8% of people feeling
unwell. So we set the desired indoor CO2 concentration as 500ppm, namely C∗ = 500ppm.
We can see there is a passage between zone 1 and zone 3, zone 2 and zone 4 from Figure
2. We just consider zone 1 and zone 2 in this simulation, and zone 2 is the neighbour of
zone 1. So the system can be expressed as

v1
dx1(t)

dt
= −Q

′

o1(30 + x1(t)) + Q12(x2(t) − x1(t)) (10)

v2
dx2(t)

dt
= −Q

′

o2(30 + x2(t)) + Q21(x1(t) − x2(t)) (11)

where Q =
[
Q

′
o1, Q

′
o2

]T
is the system input, X = [x1, x2]

T is the system state, x1 = C1−C∗,
x2 = C2 −C∗. And the parameter values have been obtained from the last section. Then
the initial values of states X are chosen as X(0) = [147, 78]T . Using the controller in
Equation (9), namely Q = [x1, x2]

T , a simulation is conducted for one sampling period.
The evolutions of the states in Equation (10) and Equation (11) are shown in Figure 8
respectively. It can be seen that each state reaches zero, that is to say, CO2 concentrations
of zone 1 and zone 2 reach the desired values asymptotically.

Now we try to adjust the actual intake airflow rate when indoor occupant numbers
changed, and the real numbers can be obtained by using the WIFI localization system. We
assume that the occupant numbers of zone 1 and zone 2 can be detected every one minute
and the numbers are as shown in Figure 9. According to Equation (2) and Equation (5),
Qo1 and Qo2 can be obtained. Since the zone occupants number is taken into consideration,
the situation of over-ventilation in some zones while under-ventilation in other zones will
not happen. In Figure 10 the effect of the designed control is presented. We firstly use the
estimated parameters to predict the CO2 concentration versus the number of occupants
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Figure 8. Evolution of state for each zone

Figure 9. Occupant numbers of each Zone

Figure 10. CO2 concentrations with or without controller
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as shown in Figure 10. The CO2 concentration changes with different occupants number
and is always greater than the desired value. The occupancy level changes every one
minute, and zone 1 CO2 concentration is higher than that of zone 2 because of its higher
number of occupants as shown in Figure 9. However, with the designed controller, the
CO2 concentration can reach the desired value less than one minute in the simulation.
That is to say, when the occupancy level changes, the input also changes accordingly, so
the CO2 concentration can be regulated within a relative short period of time.

7. Conclusions. In this paper, a model-based control of CO2 concentration in multi-
zone ACB air-conditioning systems has been proposed to keep the IAQ at a suitable
level. The number of occupants in each zone was taken into consideration to avoid over-
ventilation in some zones while under-ventilation in other zones, which in a sense reduced
energy consumption. A simple first order model with couplings from neighbours has been
used to estimate the CO2 concentration in the room. GA and LSM were adopted for
parameter identification. The model was experimentally verified in the test lab, and the
fitting and predicting results have been shown to be promising. A simple controller was
proposed to regulate the intake airflow rate so as to achieve the desired CO2 concentration
and a Lyapunov function approach was introduced to prove the stability of the system.
Simulations showed that the controller can effectively achieve the desired indoor CO2

concentration regardless of the number of occupants.
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