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Abstract. In recent years many machine learning and data mining methods have been
proposed for software defect detection. However, the datasets of software defect detection
are often imbalanced and only a small portion of instances are labeled in reality. In this
paper, considering these practical issues simultaneously, a novel software defect detection
method, COSDF, was proposed based on co-training and SMOTE. At the same time, in
order to avoid introducing noise from the synthetic instances in SMOTE or new labeled
instances in co-training, density based noise filtering strategy is used in the research.
Experimental results on six public real-world datasets show that among the compared
methods, COSDF gets the best result and COSDF is a potential solution for software
defect detection.
Keywords: Software defect detection, COSDF, Co-training, SMOTE, Density, Noise
filtering

1. Introduction. Software systems have provided many benefits for the individual and
for the community. On the other hand, the failures of software systems can cause a huge
economic damage. According to the chairman of Standish Group, Jim Jonson, software
defects cost businesses $78 billion every year [1,2]. Therefore, software defect detection has
raised more and more interests from both academic and industry fields in recent years.
Software defect detection has an important role in maintaining the quality of software
systems. It is generally believed that repairing failures after the software development is
one hundred times as expensive as repairing them before the software deployment [1,3].

In the existing software engineering literature, many machine learning and data mining
methods, such as linear or logistic regression, Decision Tree (DT), K-Nearest-Neighbor
(KNN), Artificial Neural Network (ANN), and Support Vector Machine (SVM), have been
widely applied to the software defect detection [3-5]. For example, Czibula et al. proposed
a novel ANN for detecting software faults by providing a two-dimensional representation
of the faulty and non-faulty entities from a software system [6]. In reality, however, the
datasets of software defect detection are often imbalanced and only a small portion of
instances are labeled, which makes above mentioned methods getting the unsatisfied de-
tection performance [7-9]. For the first problem, i.e., the imbalanced data problem, some
researchers have noticed that the imbalanced distribution between defective and non-
defective instances could greatly degrade the performance of software defect detection
[7,9]. For example, Wang and Yao applied random sampling strategies, i.e., under sample
non-defective instances and over sample defective instances, and found that balancing the
skewed distribution could benefit to the detection performance [7]. For the second prob-
lem, i.e., the unlabeled data problem, some studies have found that the detection models
learned from a small labeled training set may not perform well, and abundant unlabeled
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instances could improve the detection accuracy significantly [8,9]. For instance, Seliya and
Khoshgoftaar employed an EM-based semi-supervised learning method to detect software
defect and found the generalization performance of the software defect detection improved
greatly [8].

Although many studies have considered imbalanced data and unlabeled data problems
independently, few researches have proposed methods specifically designed to solve these
problems simultaneously [9]. In order to achieve more effective method for software defect
detection, these two important problems should be considered simultaneously. Therefore,
a new method, COSDF, is proposed for software defect detection based on co-training
and SMOTE (Synthetic Minority Over-sampling TEchnique) with density based noise
filtering strategy in this research. In the prior research, Jiang et al. proposed ROCUS
method, which incorporates disagreement based semi-supervised learning with under sam-
pling strategy, to detect software defect [9]. However, as the under sampling strategy may
discard some useful information in the instances, co-training methods incorporating with
over sampling strategy are employed in this research. At the same time, in order to avoid
introducing noise from the synthetic instances in SMOTE or new labeled instances in
co-training, density based noise filtering strategy is used. For the testing and illustration
purpose, six public software defect detection datasets were selected to verify the effec-
tiveness of the proposed method. Empirical results reveal that COSDF is a potential
solution for software defect detection. Moreover, among the compared methods, COSDF
gets the best result. All these results illustrate that COSDF could be used to software
defect detection.

The remainder of the paper is organized as follows. In Section 2, a new method,
i.e., COSDF, is proposed for software defect detection. Next, Section 3 presents the
experimental design, while Section 4 is responsible for analyzing the experimental results.
Finally, Section 5 draws conclusions.

2. COSDF for Software Defect Detection.

2.1. Problem formulation. In this research, software defect detection problem is for-
mulated as a semi-supervised binary classification problem, in which software module
is classified as defective or non-defective using a set of software metrics. Let L =
{(x1, y1), (x2, y2), . . . , (xm, ym)} denote the set of labeled instances and let U = {xm+1,
xm+2, . . . , xN} denote the set of unlabeled instances. xi is a d-dimensional feature vector.
yi ∈ {−1, +1} is the class label. “+1” is denoted as the minority class, e.g., defective in
the software defect detection. “−1” is denoted as the majority class, e.g., non-defective in
the software defect detection. Both L and U are independently drawn from the same un-
known distribution D, whose marginal distributions satisfy PD(yi = +1) ≪ PD(yi = −1).

As SMOTE method synthesizes minority instances and co-training picks high reliable
instances into the training datasets, the noise can be potentially introduced, which may
damage the performance of software defect detection. Therefore, density based noise
filtering strategy is employed in the research, and some concepts and terms to explain the
density based noise filtering method can be defined as follows [10].

Definition 2.1. (Neighborhood). It is determined by a distance function for two points
xp and xq, denoted by dist(xp, xq).

Definition 2.2. (Eps-neighborhood). The Eps-neighborhood of a point xp, denoted by
NEps(xp), is defined by NEps(xp) = {xq ∈ X|dist(xp, xq) < Eps}, X = {x1, x2, . . . , xm}.

Definition 2.3. (Core point). A core point refers to the point whose neighborhood of
a given radius (Eps) has to contain at least a minimum number (MinPts) of the other
points.
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Definition 2.4. (Directly density reachable). A point xp is directly density reachable from
a point xq if xp is within the Eps-neighborhood of xq, and xq is a core point.

Definition 2.5. (Density reachable). A point xp is density reachable from the point q
with respect to Eps and MinPts if there is a chain of points xp1 , . . . , xpn, xp1 = xq and
xpn = xq such that xpi+1

is directly density reachable from xpi
with respect to Eps and

MinPts, for 1 ≪ i ≪ n, xpi
∈ X.

Definition 2.6. (Density connected). A point xp is density connected to point xq with
respect to Eps and MinPts if there is a point xo ∈ X such that both xp and xq are density
reachable from xo with respect to Eps and MinPts.

Definition 2.7. (Border point). A point xp is a border point if it is not a core point but
density reachable from another core point.

Based on above concepts, we can use DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) method to construct density based clusters.

Definition 2.8. (Density based cluster). A cluster C is a non-empty subset of X satis-
fying the following requirements:

(1) ∀xp, xq: if xq ∈ C and xp is density reachable from xq with respect to Eps and
MinPts, then P ∈ C.

(2) ∀xp, xq ∈ C: xp is density connected to xq with respect to Eps and MinPts.

Definition 2.9. (Noise). Let C1, . . . , Ck be the clusters of non-empty subset of X. Then
the noise is the set of points in X not belonging to any Ci, where i = 1, . . . , k, noise =
{p ∈ X|∀i : p /∈ Ci}.

2.2. A novel software defect detection method: COSDF. For the imbalanced data
problem, a number of methods were proposed from the perspective of data or algorithm
[11]. Compared with algorithmic level methods, data level methods are algorithm inde-
pendent and often used in practice. At the data level, sampling is a popular strategy to
handle the imbalanced data problem since it straightforwardly re-balances the data set
at the data processing stage. The simplest sampling methods are random over sampling
and random under sampling [11]. As random under sampling method takes away some
majority instances and could discard some useful information, over sampling strategy is
employed in this research. Moreover, random over sampling method augments the mi-
nority instances and could make the decision regions more specific and cause over-fitting.
SMOTE, one of the popular advanced over sampling method, was proposed [12]. How-
ever, as SMOTE randomly adds the synthetic minority instances into the training dataset,
noises can probably be introduced at the same time, which will injure the detection per-
formance. In order to reduce this kind of influence, SMOTE with the density based noise
filtering strategy is proposed. Just like SMOTE, it also searches the K nearest neigh-
bors for each minority instance at the very beginning. Unlike SMOTE, it uses DBSCAN
method to judge whether the neighbor belongs to the noise. If the neighbor is the noise,
this neighbor can be discarded directly. Then, it also employs DBSCAN method to judge
whether the minority instance and neighbor belong to the same density based cluster. If
the minority instance and neighbor do not belong to the same cluster, in order to avoid
introducing new noise, it uses:

xnew = ẋ + rand(0, 1) × Eps (1)

to generate the new instance. ẋ denotes the minority instance or the neighbor, which can
be randomly selected in the method. If the minority instance and neighbor belong to the
same cluster, it uses:

xnew = x + rand(0, 1) × (x̃ − x) (2)
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to generate the new instance. x denotes the minority instance and x̃ denotes the neigh-
bor. Then the new instance xnew is judged whether it belongs to the noise. If it is the
noise, this news instance could also be discarded directly. Compared with the traditional
SMOTE method, SMOTE with the density based noise filtering strategy can generate
more accurate minority instances by using density based noise filtering strategy.

For the unlabeled data problem, many approaches have also been proposed in the lit-
erature, such as semi-supervised learning, and active learning. Among these approaches,
disagreement based semi-supervised learning approach explores the unlabeled data auto-
matically, where no human intervention is assumed. Therefore, co-training, one of the
popular disagreement based semi-supervised learning approaches, is used to software de-
fect detection in this research. Co-training method starts with a few labeled instances
to initialize a weak classifier and then use only unlabeled data to improve the learner’s
performance. It is based on the idea that feature sets are redundant sometimes and could
be split into two sets which can be used to train two classifiers. Subsequently, we can train
two classifiers which could be used to go through unlabeled instances, label them, and
add the most confident instances to the labeled dataset. Just like SMOTE, co-training
method could also potentially introduce noise into the training data, especially after the
more minority instances are generated. Learning on the noisy dataset could humble the
performance of classifiers. Therefore, density based noise filtering strategy is also em-
ployed into the standard co-training method. For every training iteration, the potential
instance, which will be added into the training dataset, must be judged whether it belongs
to the noise. If the potential instance belongs to the noise, it will be discarded directly.

Based on above analysis, COSDF is proposed for software defect detection to solve
imbalanced data and unlabeled data problems simultaneously. In COSDF, each classifier
is generated using the original labeled training dataset with improved SMOTE firstly.
Then, it iterates the following procedures K times. Firstly, each classifier labels P positive
and N negative unlabeled instances for its peer learner with density based noise filtering
strategy. Then, the classifiers will be refined using newly labeled instances provided by
its peer. The whole process will repeat until classifiers are unchanged or pre-set number
of learning rounds K has been executed. The pseudo code of COSDF is shown in Figure
1.

3. Experimental Design. We evaluated the effectiveness of COSDF on six software de-
fect detection benchmark datasets: KC1, KC2, KC3, PC1, PC3, and PC5. Each dataset
is comprised of the number of defects and some static code metrics, including LOC (Lines
of Codes) counts, McCabe complexity measures, Halstead attributes, etc., software com-
ponents which contain one or more defects are labeled as defective, while the others are
labeled as non-defective. The statistic summary of the six defect datasets is shown in [4].

It is now well-known that average accuracy is not an appropriate evaluation criterion
when there is class imbalance. Thus, we use AUC (Area Under the ROC Curve) [13] as
performance evaluation measure in this research. It has been proven scientifically that
AUC is a reliable measurement for performance measuring in the imbalanced data problem
[13,14]. AUC is produced based on ROC curve. ROC curve is a two-dimensional graph to
select possibly optimal models based on the True Positive Rate (TPR) and False Positive
Rate (FPR). In the experiment, SVM was chosen as base learner for the COSDF, imbal-
anced classification methods, i.e., Under Sampling method (US), Over Sampling method
(OS), SMOTE, Bagging, Boosting, and co-training related methods, i.e., the standard Co-
Training (CT), Co-Training with Under Sampling strategy (CT-US), Co-Training with
Over Sampling strategy (CT-OS), Co-Training with SMOTE (CT-SMOTE), Co-Training
with Bagging (CT-Bagging), Co-Training with Boosting (CT-Boosting). The standard
co-training assumes there are two redundant views, which are difficultly obtained for the
software defect detection problem. Moreover, following [15], we also randomly partitioned
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Input: Labeled instance set L;
Unlabeled instance set U ;
Eps-neighborhood Eps;
Mminimum number of points MinPts;
Learning round K;
The number of positive instance p;
The number of negative instance n;
Base classifiers f1, f2.

Process:
1. Use DBSCAN (L, Eps, MinPts) to get Cp

1 , . . . , C
p
k and Cn

1 , . . . , Cn
k ;

2. Use improved SMOTE to generate balanced data set L1, L2 using Equations
(1) and (2);

3. Loop for K iterations:
4. Use L1 to train a classifier f1 that considers only the x1 portion of x;
5. Use L2 to train a classifier f2 that considers only the x2 portion of x;
6. Do
7. Allow f1 to label most confident positive instance from U ;
8. If (xp /∈ Noise), add xp into L2;
9. While (f1 labels p positive instance)
10. Do
11. Allow f1 to label most confident negative instance from U ;
12. If (xn /∈ Noise), add xn into L2;
13. While (f1 labels n negative instance)
14. Do
15. Allow f2 to label most confident positive instance from U ;
16. If (xp /∈ Noise), add xp into L1;
17. While (f2 labels p positive instance)
18. Do
19. Allow f2 to label most confident negative instance from U ;
20. If (xn /∈ Noise), add xn into L1;
21. While (f2 labels n negative instance)
Output: F (x) = f1(x1) ∗ f2(x2)

Figure 1. The pseudo code of COSDF

the original features into two subsets with similar size, and then each subset is regarded
as a view to train co-training based on methods.

To minimize the influence of the variability of the training set, ten times 10-fold cross
validation is performed on the dataset. During the process of experiment, each dataset is
partitioned into ten subsets with similar sizes. Then, the union of nine subsets is used as
the training set while the remaining subset is used as the test set, which is repeated for ten
times such that every subset has been used as the test set once. For the union dataset of
nine subsets, it is partitioned into a labeled training dataset L, and an unlabeled training
dataset U under different label rates including 20%, 40%, 60%, and 80%.

4. Results and Discussion. Table 1 summarizes the experiment results of different
methods when label rate is 20%. The highest AUCs under different datasets are boldfaced.
Generally speaking, the results obtained from Table 1 show that the performance of
proposed COSDF method is the better than the performance of the other methods.

As shown in Table 1, for the imbalanced data classification method, compared with
SVM, SMOTE gets the best results at KC1, KC2, PC1, and PC3. Bagging gets the best
results at KC3 and PC5. For the Co-training method, compared with SVM, it gets the
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Table 1. Experimental resutls at label rate = 20%

Method KC1 KC2 KC3 PC1 PC3 PC5
SVM 0.6921 0.8004 0.6406 0.7041 0.6952 0.8836
US 0.7929 0.8372 0.5849 0.7412 0.7849 0.8483
OS 0.7882 0.8356 0.6306 0.7468 0.7880 0.8666

SMOTE 0.7911 0.8378 0.6099 0.7475 0.7988 0.8710
Bagging 0.7188 0.8178 0.6784 0.7452 0.7504 0.8838
Boosting 0.7358 0.7626 0.6379 0.7209 0.7383 0.8518

CT 0.7975 0.8518 0.7012 0.7560 0.7904 0.8874
CT-US 0.8028 0.8550 0.7057 0.7844 0.8165 0.8555
CT-OS 0.8038 0.8510 0.6692 0.7921 0.8106 0.8695

CT-SMOTE 0.8005 0.8490 0.6819 0.7775 0.8111 0.8662
CT-Bagging 0.8043 0.8530 0.7160 0.7762 0.8041 0.8866
CT-Boosting 0.7957 0.8523 0.7306 0.8093 0.8130 0.8896

ROCUS 0.7986 0.8539 0.7143 0.7898 0.8017 0.8882
COSDF 0.8051 0.8564 0.7329 0.8145 0.8157 0.8943

Figure 2. Performance comparisons under different label rates

better results at the six datasets. Moreover, COSDF gets the highest AUC, i.e., 80.51%,
85.64%, 73.29%, 81.45%, 81.57%, and 89.43%, at the six datasets.

Next, the average AUCs across six dataset are compared at the different label rates. The
experimental result is shown in Figure 2. COSDF gets the highest average AUC: 81.98%,
82.05%, 82.93%, and 83.64%. It is interesting that with the increase of label rate, the
average AUCs of compared methods are also increasing, except for CT, CT-US, CT-OS,
CT-Bagging, and CT-Boosting. On the one hand, these results indicate that the labeled
data are very important for software defect detection, although the co-training method
can utilize the unlabeled data. On the other hand, the performances of co-training based
methods almost are not improved, as the new added instances probably include noise
and deteriorate the performance of base classifiers. However, these results verify that the
density based noise filtering strategy is effective on the contrary.
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5. Conclusions. In this study, a new method, COSDF, is proposed for software defect
detection based on co-training and SMOTE with density based noise filtering strategy.
Experimental results based on the six public software defect detection datasets show that
COSDF gets the highest average AUC among the compared methods. Several future
research directions also emerge. Firstly, large datasets for experiments and applications
should be collected to further verify the conclusions of this study. Secondly, as this
research only verifies the proposed method experimentally, more deep theoretical analyses
for COSDF are needed in the future research.
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