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Abstract. This paper proposes a nonlinear control strategy to adjust the DC link voltage
and the current to control the amount of injected power into the grid. The controller
is projected using an adaptive backstepping technique in consideration of the uncertain
part and the external disturbance of actual application of the system. In order to solve
the problems of differential expansion and the control saturation, a command filter is
employed to eliminate the impact of time derivative and control saturation. The overall
stability of the whole system is analyzed based on the Lyapunov functions. Simulation
results indicate good dynamic and static performance and strong robustness with the
proposed controller.
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1. Introduction. Renewable energy Sources (RESs), especially wind and solar, for sev-
eral reasons, are compared with traditional energy sources, in recent years to obtain more
power generation opportunities. In addition, power generation from photovoltaic systems
is supported by governments and many industries, primarily to encourage the reduction
of carbon emissions and environmental pollution. Although the photovoltaic system can
be installed in two ways: stand-alone and grid-connected, about 98 percent of the photo-
voltaic systems are built in grid-connected system [1].

Some examples of nonlinear controllers for photovoltaic grid-connected system include
model predictive controller [2], sliding-mode controllers [3], and feedback linearizing con-
trollers [4]. A nonlinear backstepping controller is designed in [5] which overcomes some
limitations of feedback linearizing controller by considering all nonlinearities of the sys-
tem. However, the traditional backstepping requires that exact information of the model
is obtained and the parameter uncertainties are not taken into consideration [6].

In order to ensure the stability of most control systems with nonlinearities and param-
eter uncertainties, adaptive backstepping approach has been investigated, which has been
proved to be effective to achieve the satisfactory control performance [7]. However, it is
not perfect because of the derivative of the virtual control and the control saturation prob-
lem. At present, there are many methods to solve the above-mentioned defects such as
dynamic surface control [8] and command-filtered method [9], and among them command-
filtered backstepping is a more effective way compared to dynamic surface control [10].
And among them command-filtered backstepping is a more effective method compared
with dynamic surface control. Dynamic surface control uses the filter to solve the differen-
tial expansion problem. However, the command-filtered backstepping controller can solve
the problem of differential expansion, and it can also achieve the asymptotic tracking of
the closed-loop signal owing to the filter compensation.
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In this paper, a command-filtered adaptive backstepping control for photovoltaic grid-
connected inverter is designed to control the DC link voltage and the injection of active
and reactive power. At the same time, Lyapunov stability theory is used to prove that
the control system can be maintained asymptotically stable.

2. Grid-Connected Photovoltaic Inverter Model. Figure 1 represents a topical
three-phase grid-connected PV inverter system, which includes a PV array, a DC link
filter capacitor C, a three-phase inverter, an output filter inductor L, and a three-phase
grid.
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Figure 1. Three-phase grid-connected PV inverter system

In the original three-phase abc frame, the dynamic model of the grid-connected inverter
system can be represented through the following functions [2]:

L
dia
dt

= −Ria − ea +
vdc

3
(2Sa − Sb − Sc)

L
dib
dt

= −Rib − eb +
vdc

3
(−Sa + 2Sb − Sc)

L
dic
dt

= −Ric − ec +
vdc

3
(−Sa − Sb + 2Sc)

(1)

where the symbols of their usual meaning are showed in [4] and Sa, Sb and Sc represent
the input switching signals. It is important to note that the model (1) is time varying and
nonlinear. Here, with the dq transformation, the time-varying model becomes constant.

Finally, the dynamics of current in the dq frame can be shown as follows:

did
dt

= −R

L
id + ωiq −

Ed

L
+

vdc

L
Sd

diq
dt

= −R

L
iq − ωid −

Eq

L
+

vdc

L
Sq

(2)

where id, iq are the d - and q-axis grid currents, respectively; Ed and Eq are the d -
and q-axis grid voltages, respectively; Sd, Sq are the d - and q-axis switching functions,
respectively. According to the KCL, the relationship of DC link voltage can be written
as:

C
dudc

dt
= i0 − idc (3)

where udc is the DC link voltage, idc is the current at the input of the inverter; i0 is the
current at the output of the solar array. In the synchronous rotating dq-frame, the active
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and reactive powers exchanged between the PV array and the grid are given by:

P =
3

2
(EdId + EqIq)

Q =
3

2
(EqId − EdIq)

(4)

However, in steady-state, the average value of Eq is equal to zero. And also, considering
that the losses due to switching actions of the inverter are negligible, the power balance
relationship is udci0 = 1.5EdId. Thus, the DC link voltage dynamics is expressed by:

dudc

dt
=

3EdId

2CUdc

− idc

C
(5)

Now considering the uncertainty of the model parameters and the uncertainty caused
by the grid disturbance, the complete dynamical model of a grid-connected photovoltaic
inverter system can be described by:

dudc

dt
=

3Edid
2Cudc

− idc

C
+ δ1

did
dt

= −R

L
id + ωiq −

Ed

L
+

ud

L
+ δ2

diq
dt

= −R

L
iq − ωid −

Eq

L
+

uq

L
+ δ3

(6)

where δ1, δ2 and δ3 respectively represent the sum of the uncertain parts of the non-linear
and external disturbances in the grid-connected inverter model.

3. Adaptive Command-Filtered Backstepping Controller Design. In this section,
the controller of PV grid-connected inverter controlling DC voltage and active and reactive
power is designed step by step as follows.
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Figure 2. Structure of constrained command filter

Step 1. The tracking error variables e1, e2 and e3 are defined as follows:

e1 = udc − uc
dc, e2 = id − icd, e3 = iq − icq (7)

where uc
dc is the input reference voltage and icd and icq are the filtered command of id and

iq, correspondingly. The structure of command filter is shown in Figure 2.
Step 2. The task is to stabilize (7) and the Lyapunov function can be chosen as:

V1 =
1

2
e1

2 +
δ̃2
1

2γ1

(8)

where δ̃1 = δ̂1−δ1, δ̂1 is the estimated value of δ1, δ̃1 is the estimation error, γ1 is adaptive
gains.
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Now the derivative of V1 is given by:

V̇1 = e1ė1 +
δ̃1

γ1

˙̂
δ1

= − k1e1
2 + e1

(
3Edid
2Cudc

− idc

C
+ δ̂1 − u̇c

dc + k1e1

)
+ δ̃1

(
˙̂
δ1

γ1

− e1

) (9)

So the virtual controller can be considered as

idd =
2Cudc

3Ed

(
idc

C
− δ̂1 + u̇c

dc − k1e1

)
˙̂
δ1 = γ1e1

(10)

where idd is the desired velocity and k1 > 0 is a design constant. Substituting (10) into

(9), we have V̇1 < 0. Thus, based on Lyapunov stability theory, the virtual control is
asymptotically stable.

In order to solve the problems of differential expansion and the control saturation, a
command filter is used to eliminate the impact of time derivative of (11) and control
saturation. Passing idd through a filter, which is shown in Figure 2, the state-space model
of command filter can be described as{

q̇1

q̇2

}
=

[
q2

2ξωn

[
SR

(
ωn

2

2ξωn

)
(SM (u) − q1) − q2

] ]
(11)

where {
q1

q2

}
=

[
xc

ẋc

]
, u = xd (12)

And ξ and ωn are the damping and the bandwidth of the filter, respectively.
It is worth noting that the command filter will produce a filtering error which may

increase the difficulty in getting the tiny tracking error. So we redefine tracking error
ē1 = e1 − ε1, and design compensating signals given by

ε̇1 = −k1ε1 +
3Ed

2Cudc

(
icd − idd

)
(13)

Step 3. To stabilize the second and the third functions of (7), the following Lyapunuov
function is considered to obtain:

V2 =
1

2

(
ē2
1 + e2

2 + e3
2 +

δ̃2
2

γ2

+
δ̃2
3

γ3

)
(14)

where δ̃2 = δ̂2 − δ2, δ̃3 = δ̂3 − δ3, γ2 and γ3 are another two adaptive gains.
According to (8), (11) and (14), the derivative equation for ˙̄e1 is calculated as

˙̄e1 =
3Edid
2Cudc

− idc

C
+ δ1 − u̇c

dc + k1ε1 −
3Ed

2Cudc

(
icd − idd

)
=

3Ed

2Cudc

e2 − δ̃1 − k1ē1 (15)

Then, we can compute the derivative of V2:

V̇2 = ē1 ˙̄e1 + e2ė2 + e3ė3 +
δ̃2

γ2

˙̂
δ2 +

δ̃3

γ3

˙̂
δ3

= − k1ē
2
1 − k2e2

2 − k3e3
2 − ēδ̃1

+ e2

(
3Ed

2Cudc

ē1 −
R

L
id + ωiq +

ud − Ed

L
+ δ̂2 − i̇cd + k2e2

)
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+ e3

(
−R

L
iq − ωid +

uq − Eq

L
+ δ̂3 − i̇cq + k3e3

)
+ δ̃2

(
˙̂
δ2

γ2

− e2

)
+ δ̃3

(
˙̂
δ3

γ3

− e3

) (16)

where k2 > 0 and k3 > 0 are the design constants. And we choose the virtual control ud

and uq as:

ud = −L

(
3Ed

2Cudc

ē1 −
R

L
id + ωiq −

Ed

L
+ δ̂2 − i̇cd + k2e2

)
uq = −L

(
−R

L
iq − ωid −

Eq

L
+ δ̂3 − i̇cq + k3e3

)
˙̂
δ2 = γ2e2

˙̂
δ3 = γ3e3

(17)

Then we will get

V̇2 = −k1ē
2
1 − k2e2

2 − k3e3
2 − ēδ̃1 < 0 (18)

For sufficiently large k1, k2 and k3 > 0, thus, it is proven that the whole system is
asymptotically stable.

4. Simulation Results. In this section, the Matlab/Simulink has been used for simu-
lating the proposed control. The parameters of the model used in the dynamic simulation
are summed in Table 1. In addition, the reference power changes its value as follows: 0
kw from the time t = 0 s, 8 kw from the time t = 0.06 s, 0.6 kVar from the time t = 0.2 s,
5 kw from the time t = 0.3 s, 0.3 kVar from the time t = 0.5 s, and 10 kw from the time
t = 0.6 s. As illustrated by Figure 3, the active and reactive powers closely track to its
desired value. Meanwhile, Figure 4 represents that the DC link voltage Vdc is regulated
to the set value Vref = 200 V. And also, Figure 4 displays the changes of the grid current
with the grid voltage.

Table 1. Parameters of the system

Parameter Representation Value
C (µF) DC link capacitor 2800
R (Ω) Filter resistances 0.1

L (mH) Filter inductor 20

V ref
dc (V) Desired DC link voltage 200
Vg (V) Grid voltage 110
F (Hz) Grid frequency 50

5. Conclusion. In this paper, a new recursive method to control the active and reactive
power injection into the grid from a three-phase grid-connected PV system is proposed.
The proposed controller is designed considering all parameters of the system as unknown
and these unknown parameters are estimated through the adaptation laws. From the
simulation results, it is clear that the designed nonlinear adaptive backstepping controller
provides a very satisfactory performance in terms of maintaining steady-state operation
under various operating conditions as compared to the value of reference and the ro-
bustness against the parameter uncertainties and the time-varying external disturbances.
Future work will study the design of similar controllers by taking into account of un-
known parameters. Future work will also focus on estimation of unknown parameters of
interconnected systems with multiple photovoltaic arrays.
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Figure 3. Active and reactive power injected into the grid
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Figure 4. DC link voltage and grid voltage and current
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