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Abstract. When the control system is stabilized by a stable controller, the controller
is said to be a strongly stabilizing controller. There exist many design methods of sta-
bilizing controller, but most of the proposed design methods do not consider the stability
of stabilizing controllers. Since the instability of stabilizing controller occurs to make the
closed-loop system very sensitive to disturbances and reduce the tracking performance to
reference inputs, it is required in practice to use the stable stabilizing controller whenever
it is possible. Youla et al. showed that the plant is strongly stabilizable if and only if
the plant satisfies the parity interlacing property condition and examined a design pro-
cedure of stable stabilizing controller. However, they do not clarify the class of strongly
stabilizable plants. If the class of strongly stabilizable plants is clarified, we can obtain
the parameterization of all stable stabilizing controllers. In addition, we have a possibil-
ity to clarify the characteristic of strongly stabilizable plants. From this viewpoint, it is
desirable to clarify the class of strongly stabilizable plants. The purpose of this paper is
to clarify the class of strongly stabilizable plants.
Keywords: Strong stabilization, Strongly stabilizable plants, Closed-loop systems

1. Introduction. In this paper, we examine the class of plants which could be stabilized
by a stable controller. That is, we clarify the class of strongly stabilizable plants, which is
equivalently called the parameterization of all strongly stabilizable plants. The parame-
terization problem is to find all stabilizing controllers for plants [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
are sought. Hagiwara et al. clarify the parameterization of all plants stabilized by propor-
tional controllers [11]. Since this parameterization can successfully search for all proper
stabilizing controllers, it is used as a tool for many control problems.

For an unstable plant, the parameterization of all stabilizing controllers is solved by
Youla et al. [1, 2]. The structure of a parameterization of all stabilizing controllers for
unstable plants has full-order state feedback, including a full-order observer [3]. Glaria
and Goodwin [4] gave a simple parameterization for single-input/single-output minimum-
phase systems. However, two difficulties remained. One is that the parameterization of all
stabilizing controllers generally includes improper controllers. In practice, the controller
is required to be proper. The other one is that they do not give the parameterization
of all internally stabilizing controllers. Yamada overcame these problems and proposed
the parameterization of all proper internally stabilizing controllers for single-input/single-
output minimum-phase systems [5].

For a stable plant, the parameterization of all stabilizing controllers has a structure
identical to that of internal model control which has advantages as closed-loop stability is
assured simply by choosing a stable internal model controller parameter and closed-loop
performance characteristics are related directly to controller parameters. It makes on-line
tuning of the internal model controller very convenient. Morari and Zafiriou examined the
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parameterization of all stabilizing internal model controllers for unstable plants [6]. How-
ever, their internal model is not necessarily proper. In addition, their parameterization
includes improper internal model controllers. To overcome these problems, Chen et al.
proposed the simple parameterization of all proper stabilizing internal model controllers
for minimum-phase unstable plants [12]. Zhang et al. [13] proposed a new parameteriza-
tion, which need not the coprime factorization. In this way, the parameterization of all
stabilizing controllers is advanced.

Using unstable stabilizing controllers, unstable poles of stabilizing controller make the
closed-loop transfer function have zeros in right half plane. It makes the closed-loop
system very sensitive to disturbances and reduces the tracking performance to reference
inputs [8, 9]. In addition, if the feedback-loop of feedback control system is broken down,
that is, the feedback control system becomes feed-forward control system, the unstable
pole of stabilizing controller becomes the unstable pole of the control system. Thus, the
control system becomes unstable even if the plant is stable. From above reasons, it is
desirable in practice that the control system is stabilized by stable stabilizing controller
[9]. Therefore, several design methods of a stable stabilizing controller, which is referred
as a strongly stabilizing controller, have been considered [8, 9, 10, 14, 15, 16, 17, 18].

Youla et al. showed that the plant is strongly stabilizable if and only if the plant
satisfies the parity interlacing property condition and examined a design procedure of
stable stabilizing controller [10]. Wakaiki et al. studied the sensitivity reduction problem
with stable controllers for the linear time-invariant multi-input/multi-output distributed
parameter system [17]. Wakaiki et al. considered the strong and robust stabilization
problem that a class of plants have finitely many simple unstable zeros but possibly
infinitely many unstable poles stabilized by a stable controller in the linear time-invariant
single-input/single-output infinitely dimensional system [18]. However, they do not clarify
the class of strongly stabilizable plants. If the class of strongly stabilizable plants is
clarified, we have a possibility to obtain the parameterization of all stable stabilizing
controllers. In addition, we have a possibility to clarify the characteristic of strongly
stabilizable plants. From this viewpoint, it is desirable to clarify the class of strongly
stabilizable plants.

In this paper, we clarify the class of strongly stabilizable plants, that is, the parameter-
ization of all strongly stabilizable plants is clarified. This paper is organized as follows.
In Section 2, we show the problem considered in this paper. In Section 3, we propose
the class of all strongly stabilizable plants. In Section 4, we show a numerical example
to illustrate that the plant included in the class clarified in Section 3 could be strongly
stabilized. Section 5 gives concluding remarks.

Notations

R The set of real numbers.
R(s) The set of real rational functions with s.
RH∞ The set of stable proper real rational functions.
U The set of unimodular functions on RH∞. That is, U(s) ∈ U implies both

U(s) ∈ RH∞ and U−1(s) ∈ RH∞.

2. Problem Formulation. Consider the control system in{
y(s) = G(s)u(s) + d(s)
u(s) = C(s) (r(s) − y(s))

, (1)

where G(s) ∈ R(s) is the plant, C(s) ∈ R(s) is the controller, y(s) ∈ R(s) is the output,
u(s) ∈ R(s) is the control input, d(s) ∈ R(s) is the disturbance and r(s) ∈ R(s) is the
reference input. The strong stabilization is the control method that makes the plant
stable by using the stable stabilizing controller. Therefore, if the plant G(s) in (1) can be
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stabilized by the stable controller C(s), we call this plant G(s) the strongly stabilizable
plant.

The problem considered in this paper is to clarify the class of strongly stabilizable
plants.

3. The Class of Strongly Stabilizable Plants. In this section, we clarify the class of
strongly stabilizable plants G(s), that is, the parameterization of all strongly stabilizable
plants G(s) is shown.

The class of strongly stabilizable plants is summarized in the following theorem.

Theorem 3.1. G(s) is assumed to be coprime. The plant G(s) is strongly stabilizable if
and only if G(s) is written by the form in

G(s) =
Q1(s)

1 − Q1(s)Q2(s)
, (2)

where Q1(s) ∈ RH∞ and Q2(s) ∈ RH∞ are any functions.

Proof: First, the necessity is shown. That is, we show that if the stable controller
C(s) makes G(s) stable, then G(s) takes the form in (2). From the assumption that C(s)
makes G(s) in (1) stable, 1/(1 + C(s)G(s)), C(s)/(1 + C(s)G(s)), G(s)/(1 + C(s)G(s))
and C(s)G(s)/(1 + C(s)G(s)) are all included in RH∞. Therefore, using Q1(s) ∈ RH∞,
G(s)/(1 + C(s)G(s)) ∈ RH∞ can be rewritten as

G(s)

1 + C(s)G(s)
= Q1(s). (3)

From simple manipulation, we have

G(s) =
Q1(s)

1 − Q1(s)C(s)
. (4)

Since C(s) is stable, using Q2(s) ∈ RH∞, let C(s) be

C(s) = Q2(s), (5)

(4) is rewritten as

G(s) =
Q1(s)

1 − Q1(s)Q2(s)
. (6)

Thus, the necessity has been shown.
Next, the sufficiency is shown. That is, if G(s) in (1) takes the form in (2), then the

stable controller C(s) makes G(s) stable. When we set C(s) as

C(s) = Q2(s), (7)

then C(s) ∈ RH∞ because of Q2(s) ∈ RH∞. Then transfer functions C(s)G(s)/(1 +
C(s)G(s)), C(s)/(1+C(s)G(s)), G(s)/(1+C(s)G(s)) and 1/(1+C(s)G(s)) are rewritten
as

C(s)G(s)

1 + C(s)G(s)
= Q1(s)Q2(s), (8)

C(s)

1 + C(s)G(s)
= (1 − Q1(s)Q2(s)) Q2(s), (9)

G(s)

1 + C(s)G(s)
= Q1(s), (10)

and
1

1 + C(s)G(s)
= 1 − Q1(s)Q2(s). (11)
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Since Q1(s) ∈ RH∞ and Q2(s) ∈ RH∞, (8), (9), (10) and (11) are stable. Thus, the
sufficiency has been shown.

We have thus proved Theorem 3.1. �

Lemma 3.1. When the plant G(s) is written by the form in (2), one of stable controllers
to stabilize the plant G(s) is given by

C(s) = Q2(s). (12)

Proof: It is obvious from the sufficiency of proof of Theorem 3.1. �

4. Numerical Example. In this section, a numerical example is illustrated to show that
the plant written by the form in (2) can be stabilized by using a stable controller.

Consider the problem to make the control system in (1) stable using stable controller,
where the plant G(s) is written as

G(s) =
(s − 7)(s + 1)

(s − 1)(s + 3)(s + 5)
. (13)

G(s) in (13) is rewritten as

G(s) =

s − 7

(s + 2)(s + 3)

1 +
s − 7

(s + 2)(s + 3)

s + 3

s + 1

. (14)

Since G(s) in (13) written by the form in (2), G(s) in (13) is strongly stabilizable, where

Q1(s) =
s − 7

(s + 2)(s + 3)
, (15)

and

Q2(s) = −s + 3

s + 1
. (16)

From Lemma 3.1, a stable controller C(s) to make the control system in (1) stable is
given by

C(s) = −s + 3

s + 1
. (17)

Using the stable stabilizing controller C(s) in (17), the response of the output y(t) of
the control system in (1) for the step reference input r(t) = 1 is shown in Figure 1. Figure
1 shows that the control system in (1) is stabilized by using a stable controller C(s) in
(17).

In this way, we find that if the plant G(s) is written by the form in (2), the plant is
strongly stabilizable.

5. Conclusions. In this paper, we clarified the class of strongly stabilizable plants. That
is, we showed that if the plant G(s) is written by the form in (2), the plant can be stabilized
by stable controllers. In addition, we showed a numerical example to illustrate that the
plant written by the form in (2) can be stabilized by using a stable stabilizing controller.
Using the result in the present paper, we will clarify the parameterization of all stable
stabilizing controllers in another article.
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Figure 1. Response of the output y(t) of the control system in (1) for the
step reference input r(t) = 1
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