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Abstract. In recent years, a large volume of data streams have been rapidly produced
in many applications such as SNS (social network service), smart devices, and IoT (in-
ternet of things), and accordingly, there have been a lot of needs for sampling techniques
on those rapid data streams. In this paper, we deal with the performance improvement of
binary Bernoulli sampling which performs sampling in the multiple-input environment.
Previous binary Bernoulli sampling, however, has a significant performance degradation
problem if the number of input sites is large or the data stream explodes. To solve this
problem, we first propose a distributed processing model for improving the performance
and scalability of binary Bernoulli sampling. We then implement this model on Apache
Storm, a distributed real-time computation system. We also compare its performance
with the existing binary Bernoulli sampling on the stream environment. Experimental
results show that the proposed Strom-based binary Bernoulli sampling largely improves
the performance compared with the existing one by up to 1.8 times. To our best knowl-
edge, this is the first significant attempt that solves the performance degradation problem
of sampling algorithms by extending a single processing system to a distributed processing
system.
Keywords: Binary Bernoulli sampling, Data stream, Apache Storm, Distributed pro-
cessing model, Real-time computation

1. Introduction. In recent years, a large volume of data streams have been rapidly
generated in manufacturer, network, transportation, SNS (social network service), IoT
(Internet of things), etc. [1]. In general, the data stream is generated very fast and con-
tinuously. Therefore, for efficient analysis of the data stream, we need to extract samples
by using appropriate sampling algorithms that reflect the characteristics and patterns of
data streams [2-5]. Sampling is an extraction method in which a part of data representing
a population is selected as a sample. Typical sampling algorithms are reservoir sampling
[6], priority sampling [7], cluster sampling [8], etc. These sampling methods are not suit-
able for the real world applications, in which the data streams come from multiple sources.
Therefore, we focus on binary Bernoulli sampling [9] that is designed for the multisource
environment, i.e., distributed streaming environment [10]. Thus, we mainly discuss the
improvement of the processing performance of binary Bernoulli sampling. More precisely,
we present how to process the binary Bernoulli sampling in the distributed environment
for a large volume of data streams.

A binary Bernoulli sampling framework consists of several sites and a coordinator [9].
Each site receives a data stream from a data source and sends the candidate sample data
to the coordinator. Coordinator selects final samples based on the candidate sample data
received from the sites. However, as the number of sites increases or the data stream
explodes rapidly, the performance of binary Bernoulli sampling significantly decreases.
This is because the site sends excessive candidate sample data to the coordinator, which
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causes a severe bottleneck in the coordinator. Furthermore, the binary Bernoulli sampling
has the duplex communication structure between coordinator and each site, which can
lead to an excessive communication overhead because the sites may be connected through
different networks. These bottleneck and communication overhead are major problems
that degrade the performance of binary Bernoulli sampling. Therefore, in this paper we
first propose a distributed processing model of binary Bernoulli sampling to alleviate the
bottleneck and communication overhead problems. We then implement this model on
Apache Storm [11-14], which is a distributed real-time computing system.

For the distributed processing of binary Bernoulli sampling, we design two major struc-
tures. The first one is to design a multiple coordinators structure to alleviate the bottle-
neck problem. Only one coordinator has a physical limitation to process all the candidate
sample data if the number of data sources increases or data explosion occurs. Thus, we
try to reduce the bottleneck so that we create several coordinators, and those coordina-
tors process the excessive candidate sample data in a distributed processing manner. The
second one is to adopt a single framework structure so that multiple sites and multiple
coordinators operate in the same framework to reduce the communication overhead. In
addition, we apply a shared memory structure to storing the samples and share the com-
mon parameters. Since our single framework has a local area network and the simplex
communication, the communication overhead between sites and coordinators becomes
much smaller than the existing structure.

In this paper, we implement the proposed distributed model of binary Bernoulli sam-
pling on Apache Storm to verify its practicality and efficiency. Storm is a typical dis-
tributed processing system and specialized in data stream processing. To apply our
distributed model to Storm, we first implement data sources as spouts and sites and
coordinators as bolts [12]. We then use Redis [15], in-memory-based database, as a
shared memory for rapid communication between nodes. Experimental results show that,
according to the number of nodes, the proposed Storm-based binary Bernoulli sampling
improves the performance by up to 1.8 times over the existing binary Bernoulli sampling.
We believe that the proposed Storm-based binary Bernoulli sampling is a very meaning-
ful approach that not only extends the multiple-input environment on the distributed
model but also improves the performance by adopting Apache Strom as a real distributed
processing system.

The organization of this paper is as follows. Section 2 describes related work. Section
3 proposes the distributed model of binary Bernoulli sampling and applies it to Apache
Storm. In Section 4, we confirm the superiority of the proposed distributed model through
experiments. Finally, Section 5 summarizes and concludes this paper.

2. Related Work. Binary Bernoulli sampling [9] extracts samples with the same prob-
ability when data streams are given from multiple sources. Figure 1 shows a working
framework of binary Bernoulli sampling. As shown in the figure, we note that binary
Bernoulli sampling consists of n sites and one coordinator. Here is a brief description of
the binary Bernoulli sampling procedure. First, each site receives a data stream from a
data source. Second, all sites receive the round from the coordinator and send candidate
sample data which can be selected as a sample. That is, each site performs pre-sampling
in advance to reduce the overhead of the coordinator. Third, the coordinator selects the
samples from the candidate sample data. If the round is updated, the coordinator shares
the updated current round with the sites. Binary Bernoulli sampling is performed by
repeating this procedure. Please refer to [9] for the detailed explanation.

Binary Bernoulli sampling has a performance degradation problem occurring when a
large number of sites or a huge volume of stream data. Binary Bernoulli sampling has
an n:1 structure where multiple sites send candidate sample data to a single coordinator.
Therefore, if a large number of sites send excessive data to the coordinator, the coordinator
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Figure 1. A working framework of binary Bernoulli sampling

Figure 2. A working framework of Apache Strom

shows a bottleneck problem and the sampling performance is significantly degraded. In
addition, since the site and coordinator use the duplex communication structure to share
the round or candidate sample data while they are located in different networks, frequent
communication overheads occur during data transmission which degrades sampling perfor-
mance significantly. To alleviate these bottleneck and communication overhead problems,
in this paper we first propose a distributed processing model of binary Bernoulli sampling
with the multiple coordinators structure. We then design multiple sites and coordinators
working on a single framework structure.

Apache Storm [11-14] is a typical distributed processing system for handling a large
volume of real-time data streams. Storm is specialized in the data stream environment
since it constructs multiple servers as a cluster and processes data in real time. In addition,
Storm constructs a series of tasks from input to output of stream data as a topology [12],
and the topology consists of a number of spouts and bolts. Each spout receives a data
stream from data source, converts the data into a tuple [14], and sends it to bolts. Each
bolt processes the data received from spouts or other bolts and sends the processed results
to other bolts, output devices, or storage devices. Figure 2 shows a working framework
of Strom, and readers are referred to [11] for the detailed explanation.

3. A Storm-Based Binary Bernoulli Sampling. In this section, we present a Storm-
based distributed processing model for binary Bernoulli sampling. Figure 3 shows an
overall working framework of the proposed model. As shown in the figure, the proposed
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Figure 3. A working framework of a distributed binary Bernoulli sampling

distributed model consists of input data streams, sites, coordinators, shared memory, and
sample results. Unlike Figure 1, our model has an n:m structure where multiple sites send
data to multiple coordinators. Working steps of the distributed binary Bernoulli sampling
are as follows. Firstly, data streams come from multiple data sources in the same way as
the existing binary Bernoulli sampling. Secondly, each site performing the pre-sampling
reads the current round from the shared memory. Thirdly, the site computes whether
the input is the candidate sample data that can be selected as a sample in the current
round, and if so, it sends the candidate sample data to the coordinator. Here, according
to the many-to-many structure, a site may send a sampling candidate to any coordinator.
Fourthly, the coordinators select final samples by comparing the candidate sample data
with the current samples stored in the shared memory. If a coordinator increases the
current round, the coordinator updates the round to the shared memory to share it with
other sites and other coordinators. Fifthly, since the sample results are stored in the shard
memory, we can use the sample results by accessing the shared memory.

The proposed distributed binary Bernoulli sampling alleviates the bottleneck and ex-
cessive communication overhead problems by adopting a single framework structure with
multiple coordinators. Firstly, by adopting multiple coordinators structure, we can effi-
ciently handle a large volume of candidate sample data received from the multiple sites as
a distributed processing strategy. However, if coordinators are created in different nodes,
sample results, round, and other information should be shared among coordinators and
sites. To solve this problem, we use a shared memory structure and share these common
information through the structure. Secondly, by constructing a single framework struc-
ture, we can reduce the communication costs between coordinators and sites. In the binary
Bernoulli sampling, since sites and coordinators use duplex communication over different
networks, it may show frequent and excessive communication overhead. To alleviate this
problem, we first construct sites and coordinators in a single distributed framework. We
then change the duplex communication structure to the simplex communication structure
through a shared memory. In the existing sampling architecture, coordinators send sam-
pling parameters to sites continuously, which results in frequent duplex communications
between coordinators and sites. To solve this problem, we use the simplex communication
structure where coordinators store the sampling parameters in the shared memory, and
sites get the parameters by simply referring the shared memory. That is, by utilizing a
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shared memory in a single framework, the proposed distributed model not only eliminates
the communication costs from the coordinator to the site but also reduces the external
network overhead.

We now explain how we apply the proposed model to a Storm-based architecture. Fig-
ure 4 shows an overall working framework of the Storm-based binary Bernoulli sampling.
We here implement the proposed distributed model by fully exploiting Apache Storm
functionalities. Comparing Figures 3 and 4, there are three different points as follows.
Firstly, we implement the multiple data streams of Figure 3 as spouts. Secondly, we im-
plement the sites and coordinators as bolts. Thirdly, to share the information in real time,
we implement the shared memory as Redis [15], an in-memory-based DBMS (database
management system). As shown in Figure 4, each site bolt receives a data stream from
a spout and sends its candidate sample data to any coordinator bolt. Each coordinator
bolt selects samples from the candidate sample data. The round is shared through Redis,
and the sampling results also share the user through Redis.

Figure 4. A working framework of a Storm-based binary Bernoulli sampling

4. Performance Evaluation. In the experiment, we compare the execution times of
the existing binary Bernoulli sampling with the proposed Storm-based binary Bernoulli
sampling. The hardware platform consists of one master node (Xeon E5-2630V3 2.4GHz,
8 Core) and eight slave nodes (Xeon E5-2630V3 2.4GHz, 6 Core), each of which has
32GB RAM and 256GB SSD. The software platform of all nodes is CentOS 7.2.1511
Linux operating system. As an input data stream, we randomly generate 1,000,000 text
streams in each spout. For the existing binary Bernoulli sampling, we use a single node
structure with one coordinator in Storm.

Table 1 shows the execution times measured at a single node (existing sampling model)
and distributed nodes (proposed sampling model), respectively, and Figure 5 shows the
execution times as a graph. Note that “1-2 nodes” means one master-two slaves. Likewise,
“1-4 node” and “1-8 node” mean one master-four slaves and one master-eight slaves,
respectively. As shown in the table and the figure, we note that, as the number of nodes
increases, the execution time of the existing sampling rapidly increases while that of the
proposed model increases gradually. In particular, as the number of spouts increases,
that is, as the amount of input stream data increases, the performance improvement
is much larger than the existing sampling model. In the distributed processing model,
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Table 1. Execution times of single and distributed nodes

(ms)

No. of spouts Single node
Distributed nodes (master-slaves)

1-2 1-4 1-8
1 181,859 176,573 160,778 166,669
2 189,636 176,583 167,592 173,680
4 229,482 207,696 179,689 176,551
8 357,927 238,171 220,631 193,482

Figure 5. Change of execution times of single and distributed nodes

the throughput increases as the number of nodes increases. If the input data size is
small, the performance of the single model and that of the distributed model may be
similar. However, as the input stream increases, the distributed model with relatively
high throughput will perform much faster than the single model. This indicates that the
proposed Storm-based model beats the existing single model for the large and fast data
stream environment. In summary, the proposed Storm-based binary Bernoulli sampling
improves the performance by up to 1.8 times compared with the existing one. In addition,
as the number of nodes increases, this performance difference becomes much bigger. It
means that the proposed distributed processing model is suitable for a large volume of
data stream environment.

5. Conclusions. In this paper, we proposed a distributed processing model for improv-
ing the performance of binary Bernoulli sampling and implemented the model on Apache
Storm. Since the existing binary Bernoulli sampling works on a single node, it has a per-
formance degradation problem for a large volume of stream data. To solve this problem,
we first proposed a distributed processing model where binary Bernoulli sampling oper-
ates on multiple nodes. We then implemented the model on Storm which was specialized
in data steam processing. Experimental results indicated that the proposed Storm-based
binary Bernoulli sampling improved the performance compared with the existing one by
up to 1.8 times. We also note that, as the number of nodes or a volume of data increases,
the performance improvement significantly increases. By these experimental results, we
believe that the proposed distributed binary Bernoulli sampling is an excellent approach
that not only extends the existing binary Bernoulli sampling to the distributed structure
but also improves the performance through the Storm-based actual implementation. As
the future work, firstly we will consider the InfiniBand [16] network to minimize commu-
nication costs between sites and coordinators. Secondly we will apply the sliding window
mechanism [17] to binary Bernoulli sampling.
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