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Abstract. This paper presents a method for accurately identifying the locations of leaks
in gas-filled cables. Chaos eyes derived through chaos theory were computed, and the
Chaos eyes were used as the features. An extensive neural network (ENN) was used to
diagnose faults in gas-filled cables. Raw data were collected from a foam-skin polyethy-
lene insulated Stalpeth sheathed cable system that was operated by Chunghwa Telecom
Company, the largest telecommunications firm in Taiwan. The results suggested that the
proposed method enabled the high accuracy identification of cable leaks and compared fa-
vorably to the traditional pressure gradient method in leak identification.
Keywords: Gas-filled cables, Chaos eyes, Chaos theory, Extensive neural network, Di-
agnose faults, Foam-skin polyethylene insulated Stalpeth sheathed (F.S.-STP) cable,
Traditional pressure gradient method

1. Introduction. Chunghwa Telecom, the largest telecommunications firm in Taiwan,
detects leaks in gas-filled cables in accordance with its self-designed training materials
concerning indoor gas-filled cables [1]. Specifically, the firm implements the traditional
pressure gradient method (TPGM), which is a conventional leak detection method. Al-
though the TPGM involves simple calculation, it is prone to error, which wastes time,
money, and manpower for repairing gas-filled cables; additionally, the resulting delay in
repair work can damage the insulation of the cables, leading to serious malfunctions in
[2].

Some studies have conducted fault detection on cables. In [3], time difference-of-arrival
was performed to detect faults in 11 kV-medium-voltage ethylene propylene rubber (EPR)
cables. A chaotic analysis was conducted in [4] to identify insulation defects in high-
voltage, direct current superconducting cables. In [5], resonant frequency analysis and
PSCAD were used to conduct an online diagnosis of power cables. Other studies have
applied algorithms for cable diagnosis. A partial discharge detection algorithm and a
verification test were developed in [6] to locate faults in extra-high-voltage cables, and
the algorithm was tested using a 154-kV cross-linked polyethylene (XLPE) power cable.
In [7], an incipient fault location algorithm was proposed, which accounted for fault arc
voltage and could detect fault locations in underground cables. Genetic algorithms were
implemented in [8] to identify optimal connecting points between power lines and under-
ground cables, thus reducing the impact of magnetic flux density. In [9], extension neural
network (ENN) [10] was utilized to categorize and identify faults in internal combustion
engines. An ENN-based diagnosis system was proposed in [11] to diagnose incipient faults
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in power transformers and the method was tested using 40 dissolved gas analysis datasets
from power transformers.

However, few studies have discussed fault detection or algorithm-based fault diagnosis
in gas-filled cables. Thus, the present study used an ENN and chaos theory to detect
leak locations in gas-filled cables. The ENN was designed to have a simple structure,
simple compilation, and high accuracy rate. Moreover, preprocessing raw data by using
chaos theory helped to enhance the ENN’s fault-identification capability because the
chaos theory has the ability to reduce a large number of original data into few important
representative feature numbers.

The remainder of this paper is organized as follows. Section 2 presents the structure
of F.S.-STP cable system. Section 3 describes the chaos theory and ENN fault detection
method. Section 4 shows the performance of the proposed method and compares the
results with different data. Finally, a brief conclusion is drawn.

2. The Structure of F.S.-STP Cable System. F.S.-STP cable is mainly designed for
foam skin polyethylene insulated, aluminum and steel tape shield, polyethylene sheathed,
(Stalpeth) local cable that is used for trunk between telephone offices and feeding between
telephone offices and subscribers. Chunghwa Telecom’s subscriber cable system uses a
continuous-feed pipeline pressure system to fill F.S.-STP cables with air (Figure 1). The
pipeline pressure system comprises a gas-filled cable, nitrogen inflator, air panel board,
barrier, and air pressure sensor. The system uses the inflator to provide dry air with a
relative humidity of 3% at 20◦C into cables at a given pressure of 650 g/cm2 or not higher
than 9 psi), thus maintaining a certain pressure (typically 300 g/cm2 (4 psi)) within the
cables.

Figure 1. The structure of F.S.-STP cable system

3. Methodology.

3.1. Chaos theory. The chaotic dynamic error system extracts the dynamic errors be-
tween two chaos systems; the Lorenz chaos system is employed in this study. The master
(Lmaster) and slave (Lslave) Lorenz systems are expressed in Equations (1) and (2), re-
spectively.

Lmaster =

 ẋ1 = α(x2 − x1)
ẋ2 = βx1 − x1x3 − x2

ẋ3 = x1x2 − γx3

(1)
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Lslave =

 ẏ1 = α(y2 − y1)
ẏ2 = βy1 − y1y3 − y2

ẏ3 = y1y2 − γy3

(2)

By subtracting Equations (1) and (2), the chaotic dynamic function of Lorenz mas-
ter/slave system is obtained in the form of metric shown as Equation (3) [13]. ė1

ė2

ė3

 =

 −α α 0
β −1 0
0 0 −γ

 e1

e2

e3

+

 y2y3 − x2x3

−y1y3 + x1x3

y1y2 − x1x2

 (3)

where x is the master system with an initial value of zero; y is the slave system containing
original signal values; α, β, γ are the adjusted error coefficients and are based on the
Lorenz’s experimental experience which are set as 10, 28 and 8/3 respectively. e1 and e2

are used to generate the dynamical map of chaotic dynamic error. The coordinates of the
two centers of gravity in the map are defined as the Chaos eyes, used as the features of
the data of F.S.-STP leakage points [14,15].

3.2. ENN fault detection method. The ENN can be seen as supervised learning;
the purpose of learning is to tune the weights of the ENN to achieve good clustering
performance or to minimize the clustering error [11]. The schematic structure of the ENN
is depicted in Figure 2. Before the learning, several variables have to be defined. Let
training set be {X1, T1} , {X2, T2} , . . . , {XQ, TQ}, where Q is the total number of training
patterns, Xi is an input vector to the neural network and Ti is the corresponding target
output. The i-th input vector is Xi ≡ {xi1, xi2, . . . , xin}, where n is the total number of
the features. To evaluate the learning performance, the error function is defined below:

Et =
1

2

Q∑
i=1

nc∑
j=1

(tij − Oij)
2 (4)

where tij represents the desired j-th output for the i-th input pattern, and Oij represents
the actual j-th output for the i-th input pattern.

Figure 2. The structure of extension neural network (ENN)

The learning algorithm can be described as follows.
Step 1: Set the connection weights between input nodes and output nodes according

to the range of classical domains. The range of classical domains can be directly obtained
from previous experience, or determined from training data as follows:

wL
kj = min

Ti∈k
{xij} (5)
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wU
kj = max

Ti∈k
{xij} (6)

For i = 1, 2, . . ., Q; j = 1, 2, . . ., n; k = 1, 2, . . ., nc

Step 2: Read the i-th training pattern and its cluster number p

Xi = {xi1, xi2, . . . , xin} (7)

Step 3: Use the extension distance (ED) to calculate the distance between the input
pattern Xi and the k-th cluster as follows:

EDik =
n∑

j=1

(∣∣xij −
(
wU

kj + wL
kj

)
/2
∣∣− (wU

kj − wL
kj

)
/2(

wU
kj − wL

kj

)
/2

+ 1

)
(8)

For k = 1, 2, . . . , nc

The proposed extension distance is a distance measurement; it can be graphically pre-
sented as in Figure 3. The proposed ED can describe the distance between the x and a
range

⟨
wL, wU

⟩
, which is different from the traditional Euclidean distance. We can see

that different ranges of classical domains can arrive at different distances due to different
sensitivities. This is a significant advantage in classification applications. Usually, if the
feature covers a large range, the data requirement is fuzzy or low in sensitivity to distance.
On the other hand, if the feature covers a small range, the data precision requirement
and sensitivity to distance are high.

Figure 3. The proposed extension distance (ED)

Step 4: Find the m, such that EDim = min {EDik}. If m = p, then go to Step 6;
otherwise go to Step 5.

Step 5: Update the weights of the p-th and the m-th clusters as follows:
w

L(new)
pj = w

L(old)
pj + η

(
x

ij
−

w
L(old)
pj + w

U(old)
pj

2

)

w
U(new)
pj = w

U(old)
pj + η

(
x

ij
−

w
L(old)
pj + w

U(old)
pj

2

) (9)


w

L(new)
mj = w

L(old)
mj − η

(
x

ij
−

w
L(old)
mj + w

U(old)
mj

2

)

w
U(new)
mj = w

U(old)
mj − η

(
x

ij
−

w
L(old)
mj + w

U(old)
mj

2

) (10)

For j = 1, 2, . . ., nc
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where η is a learning rate, set to 0.1 in this paper. From this step, we can clearly see that
the learning process is only to adjust the weights of the p-th and the m-th clusters.

Step 6: Repeat Step 2 to Step 5; if all patterns have been classified, then a learning
epoch is finished.

Step 7: Stop, if the clustering process has converged, or the total error has arrived at
a preset value; otherwise, return to Step 3.

It should be noted that the proposed ENN can take human expertise before the learn-
ing, and it can also produce meaningful output after the learning, because the classified
boundaries of the features are clearly determined.

4. Simulation Results and Discussion.

4.1. Experimental data. Data were collected from Chunghwa Telecom’s engineering
projects. The gas-filled cable tested in this study, which was installed in a regional
Internet data center in Taichung in central Taiwan, measured 1,652 m in length. Four
pressure transducers were installed respectively in the data center, 87 m, 659 m, and
1,333 m away from the facility to detect leakage in the cable. Figure 4 presents a graph of
different types of fault identified on the basis of testing data [2]. The figure suggests that
the four features of the seven faults ranged from 3 to 7 and overlapped with each other.
This caused reductions in the fault identification accuracy of an ENN during its training
and identification. Thus, before the ENN was implemented, raw data were preprocessed
to determine the features of each type of fault. The whole process of ENN and chaos

Figure 4. The curve of four manholes data

Figure 5. The whole process of ENN and chaos theory
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theory shows in Figure 5. Firstly, chaos theory was used to calculate the features of the
28 raw data records to derive chaos eyes. Secondly, the coordinates of the Chaos eyes were
multiplied, and their product was used as a feature. Thirdly, the ENN was trained with
data obtained through preprocessing to get weighting values. Finally, the ENN identified
leak locations (fault types) in the gas-filled cable from testing data.

4.2. Testing results. MATLAB was adopted to create algorithms of the chaos theory
and ENN. Firstly, 28 raw data records were computed by using chaos theory to derive
the Chaos eyes. The product of these Chaos eyes was used as the feature of each type of
fault (Figure 6). Secondly, the ENN was trained with the 28 preprocessed data records,
and the network was used to identify a randomly chosen preprocessed data record. The
results of simulation with the ENN and the TPGM were compared, and the accuracies
of ENN and TPGM are 85.7% and 43%, respectively. The proposed method has higher
recognition accuracy than the TPGM [2]. Thirdly, having been identified by the ENN
before and after preprocessing, the raw data were presented in the form of median and
standard deviation and subsequently identified by the network. To take account of the
noise and uncertainties, 28 sets of testing data were created by adding ±10% to ±30%
of randomness, and the results are shown in Table 1. The proposed method has a sig-
nificantly higher recognition accuracy of 82.4% with ±10% errors added. Contrarily, the
accuracies of the other methods are only 25.9%, 22.6% and 17.4% under the same condi-
tions. The accuracy rate of the proposed method is still higher than 66% even the noise
errors added ±30% compared to other situation.

Figure 6. The preprocessing data of F.S.-STP leakage points by chaos method

Table 1. Diagnosis performances of errors added

Raw data
Raw data Raw data Preprocessing

Noise
Accuracy

(Standard (Median) data (Chaos TPGM
percentage

rate
Deviation) Accuracy eyes product) [2]

Accuracy rate rate Accuracy rate
±0% 28.6% 28.6% 28.6% 85.7% 43%
±10% 25.9% 22.6% 17.4% 82.4% N/A
±20% 24.1% 19% 15.7% 75.3% N/A
±30% 21.9% 15.6% 12.3% 66.7% N/A
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5. Conclusions. A method for ensuring high-accuracy leak detection in gas-filled cables
was developed in this study. An ENN was used to identify leak locations in a gas-filled
cable. Measured data were preprocessed through chaos theory to derive Chaos eyes. The
product of these Chaos eyes was applied in the training of the ENN to identify leaks in the
cable. The simulation results indicated that the ENN was highly accurate compared with
the TPGM, as well as when raw data were not preprocessed or when the medians and
standard deviations of the data were estimated. The ENN achieved an identification rate
of up to 79% even with the addition of a 10%, 20%, or 30% error signal. Moreover, the
ENN had an identification rate that was three times without preprocessing and twice that
of the TPGM. A fault diagnosis model for gas-filled cables was developed. The model can
be used to extend the fault-diagnosis length of the cables as more measurement points
are established or to diagnose faults in different types of cables and related devices.
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