
ICIC Express Letters ICIC International c©2017 ISSN 1881-803X
Volume 11, Number 11, November 2017 pp. 1661–1668

CONSTRUCTING MULTI-OUTPUT REGRESSION MODEL
WITH TUNABLE KERNEL USING GROUP SEARCH OPTIMIZER

Xingyi Chen1, Lihua Fu2,∗ and Zhihui Liu2

1Faculty of Information Engineering
2School of Mathematics and Physics

China University of Geosciences
No. 388, Lumo Road, Wuhan 430074, P. R. China

chenxyi@sohu.com; zhhliu@cug.edu.cn; ∗Corresponding author: lihuafu@cug.edu.cn

Received May 2017; accepted July 2017

Abstract. Most of the multi-output regression models with Gaussian kernel adopt a
fixed and predefined scale parameter for all regressors. These models become problematic
when fitting noisy samples of a function with time-varying dynamics. This paper proposes
to tune the center vector and scale parameter of Gaussian kernels term by term. Specially,
we employ a greedy scheme to construct the kernel model incrementally by minimizing
norm of the residual matrix using group search optimizer (GSO). Compared with the
previous multi-output kernel models, the new algorithm can generate very sparse model
with better generality.
Keywords: Orthogonal forward selection, Multiple output regression, Tunable kernel,
Kernel model

1. Introduction. In multiple output regression problems, a set of input and target ob-
servations {xk,yk}N

k=1 is given with xk ∈ Rm, yk ∈ Rn. Unlike the ordinary single output
case, the target values yk’s are vectors rather than scalar quantities, which are considered
as the noisy output of a function f : Rm → Rn as

yk = f(xk) + εk, (1)

where εk ∈ Rn is a measurement noise vector. The multiple regression framework aims
to learn a mapping f(xk) from the input space to an n-dimensional output. And it has
been found in many applications, such as pose estimation [1,2] and viewpoint estima-
tion [3] in computer vision, time series prediction [4], robot control [5,6] and biological
data processing [7]. Moreover, some applications, e.g., camera relocalization and cardiac
volume estimation can be effectively solved by transferring the original problem into a
multi-output regression task [8-10].

Recent developments in kernel methods for vector outputs show great promise to ana-
lyze the relationship between input data and vector-valued output [11-15]. They typically
assume a linearly weighted model for f(xk) as

f(x) = w0 +
N

∑

k=1

wkK(x,xk). (2)

Among all the kernels, the Gaussian function is the most popular because of its good
locality and generality

K(x,xk) = exp

{

−||x − xk||2
2σ2

}

for k = 1, 2, . . . , N, (3)

where σ is the kernel width. Note that the kernel width σ is invariant for all the training
samples in the standard kernel machines for vector-valued outputs [11-14].

1661



1662 X. CHEN, L. FU AND Z. LIU

The training of multiple output regression model with Gaussian kernel function involves
the optimization of three kinds of parameters: kernel centres, kernel scales, and the
connecting weights between these kernels. In [11], two general dimensional multiple output
support vector regressions (MSVRs) named SOCPL1 and SOCPL2 were proposed, which
differ at the first-order and second-order loss. In MSVRs, all the training samples are
assigned as the kernel centres while all terms in (2) share a same scale parameter which is
decided before training by cross validation. The weight and bias parameters are optimized
together. In [12], relevance vector machine (RVM) was generalized to multivariate RVM
(MRVM), which decides the parameters by alternatively minimizing the regression loss
and estimating the corresponding probabilistic matrix. Although they excel the state-
of-the-art algorithms in many aspects, both MRVM and MSVRs suffer the limitations
that fail to assign the kernel centres flexibly. Actually, both models choose fixed scale
parameters for all the terms before training. However, for a dataset that consists of noisy
samples of a function with time-varying dynamics (e.g., Doppler signals or speech signals),
choosing a large kernel width will result in a predicted response, which is smoothed in
the high-frequency subdomains of the dynamic function. On the other hand, selecting a
small kernel width will yield a predicted response, which is over-fitted in the low frequency
subdomain of the dynamic function.

In this paper, we propose a novel multi-output tunable kernel model (MTKM) for the
regression problem. Instead of (2), MTKM is formulated as

f(x) = w0 +

L
∑

k=1

wkφk(x) (4)

with

φk(x) = Kk(x, µk) = exp

{

−||x − µk||2
2σ2

k

}

for k = 1, . . . , N. (5)

Compared with the traditional kernel machines in (2), MTKM tunes kernel scale and
center adaptively. Thus, MTKM is much more flexible to tune the kernel parameters than
the traditional kernel models.

Specially, MTKM uses orthogonal forward selection [16] (OFS) to construct a regression
model incrementally with a greedy scheme. At each regressor stage, MTKM tunes the
optimal kernel width and center to minimize the training error with the aid of group search
optimizer (GSO) [17]. GSO is a population-based heuristic optimization algorithm, which
is simple to implement but extremely efficient to solve the high dimensional optimization
problems, such as neural networks constructing. Other optimization algorithms can be
used alternatively [18]. The experimental results on both simulated dataset and real
seismic records show the new approach is efficient.

This paper is organized as follows. In Section 2, multi-output orthogonal forward
selection is introduced. The detailed description of the proposed algorithm is presented
in Section 3. The experimental results are simulated and discussed in Section 4. Finally,
conclusions are given in Section 5.

2. Multi-Output Orthogonal Forward Selection. The multi-output regression model
can be formulated as [16]

Y = ΦW + E. (6)

Here Y = [y1 y2 · · ·yN ]T is the output matrix, (Φ)i,j = φi(xj) is the kernel matrix,
the weight matrix is denoted by W = [w1 w2 · · ·wL]T , and the residual matrix is E =
[e1 e2 · · ·eN ]T . Let an orthogonal decomposition of the regression matrix Φ be

Φ = PA, (7)

where A is an upper triangular matrix with the unit diagonal element and P = [p1 p2 · · ·
pM ] with the orthogonal columns that satisfy pT

i pj = 0 if i 6= j.



ICIC EXPRESS LETTERS, VOL.11, NO.11, 2017 1663

The regression model (6) can alternatively be expressed as

Y = PΘ + E (8)

with the new weight matrix Θ that satisfies the triangular system Θ = AW.
The L2,1 norm of the error matrix is

‖E‖2,1 = ‖Y − PΘ‖2
2,1 =

M
∑

k=1

∥

∥yk −Pθk
∥

∥

2

2
, (9)

where the vectors yk and θk are the k-th columns of Y and Θ respectively. And
∥

∥yk − Pθk
∥

∥

2

2
=

(

yk
)T

yk −
(

Pθk
)T (

Pθk
)

. (10)

At the L-th forward stage, the reduction of ‖E‖2,1 is

RedL =
M

∑

k=1

pT
LpLθk

Lθk
L. (11)

The OFS applies a greedy scheme to achieving the sparse kernel model. At each step,
we minimize the reduction in (11) to obtain a new model term. To be more specially, at
the L-th forward stage, we solve the following optimization problem

min
uL

RedL with uT
L =

[

µT
L σT

L

]

. (12)

3. Algorithm.

3.1. Group search optimizer. In this paper, we apply GSO to obtaining the solution of
(12) [16]. GSO is a population-based heuristic optimization algorithm, which is suitable
to tackle the high dimensional problem. It adopts the producer-scrounger (PS) model
metaphorically for designing optimum searching strategies, inspired by animal foraging
behavior. In the GSO scheme, a group consists of three types of members: producers,
scroungers and rangers. Producers and scroungers’ behaviors include scanning and area
copying; and rangers perform random walk. In a searching iteration, the member located
in the most promising area is chosen as the producer. The producer scans the environment
to seek resources (optima). A number of group members are selected as scroungers, who
will keep searching for opportunities to join the resources found by the producer. The
rest of the group members called rangers will be dispersed from their current positions.
Please refer to [17] for more detail for GSO.

3.2. MTKM with GSO. The algorithm to select the L-th regression term is described
as below.

Initialization

Let k = 0 . Here k denotes the current generation of GSO. Generate randomly the
initial positions u0

p with p = 1, . . . , P s. Here Ps means the size of population.
While k < Gen. Here Gen is a preset maximum number of generation.
For each element in current population
Generate Producers

According to (5), generate the regression vector φ(k)
p for each kernel parameter vector

u
(k)
p as the candidate of the L-th regressor, and orthogonalize it to the already-selected

regression column vectors p1 . . .pL−1,

α
(p)
j,k =

pT
j φ(p)

k

pT
j pj

, 1 ≤ j < L, (13)
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p
(p)
k = g

(p)
k −

L−1
∑

j=1

α
(p)
j,kpj. (14)

For 1 ≤ p ≤ Ps, calculate the cost function J
(p)
k for each uk

p. The weight in the
orthogonal system can be calculated as

θ(p)
k =

(

p
(p)
k

)T

Y
(

p
(p)
k

)T

p
(p)
k

. (15)

And the error in (10) is

J
(p)
k = JL−1 −

1

N

(

p
(p)
k

)T

p
(p)
k

(

θ(p)
k

)T

1. (16)

The vector 1 denotes an all-ones vector with the proper size.
Perform Producing

There are 4 steps to perform producing
(1) Scan at zero degree

uz = uk
p + r1lmaxD

k
p

(

ϕk
)

.

(2) Scan at left hand side

ur = uk
p + r1lmaxD

k
p

(

ϕk + r2βmax/2
)

.

(3) Scan at right hand side

ul = uk
p + r1lmaxD

k
p

(

ϕk − r2βmax/2
)

,

where Dk
p(·) is the angle function for the search procedure [17], and r1 ∈ R1 is normally

distributed random number with mean 0 and standard deviation 1. r2 is a uniformly
distributed random sequence in the range of [0, 1], and lmax =

√
n is the radix of the

search area.
(4) Update the position uk

p and head angle ϕk as

uk+1
p = arg min

uz ,ur,ul,u
k
p

J and ϕk+1 = ϕk + r2αmax

where αmax is the maximum head angle. After a number of iterations, let us say t, if this
procedure cannot obtain a better head angle, just set ϕk+t = ϕk.

Perform scrounging

Randomly select 80% from the rest members to perform scrounging, that is uk+1
i =

uk
i + r3 ◦ (uk

p − uk
i ). Here ◦ is the Hadamard product. r3 is a uniformly random sequence

in range (0, 1).
Perform dispersion

For the rest members, they will be dispersed from their current position to perform
ranging angle and position dispersion:

ϕk+1 = ϕk + r2αmax, uk+1
i = uk

i + li · Dk
i

(

ϕk+1
)

The fitness function is evaluated for all the new group members.
End For

k = k + 1.

End While.
The procedure above will produce the L-th kernel parameters uL, the orthogonalized

regression column vector pL and column of regression matrix.
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4. Experiments. In this section, we will compare the proposed MTKM with SOCPL1,
SOCPL2 [11] and multivariate relevant vector machines (MRVM) [12] in terms of train-
ing accuracy, model sparsity and generality. The parameters in GSO are empirically
assigned as below. The population size Ps is 48, and the maximum iteration num-
ber t = round

(√
n + 1

)

, here round(·) is the nearest integer function and n is the
search space dimension. In the step of Perform Producing, the initial directional an-
gle ϕ0 = (π/4, . . . , π/4), and maximum head angle αmax = βmax = π/t2. Please refer to
[14] for the more detail of GSO parameter assignment.

4.1. Complex function regression. The first target system is a complex function as

f̂(x) = sin(12x)/(12x) + i · sin 2πx, (17)

where i =
√
−1. Totally 200 samples were generated by (17) where the input data xi’s

are uniformly sampled over the interval [−1, 1]. We split randomly the total dataset into
two parts with the same size. Half of the samples are used as training dataset and the
remaining are used for testing. The Gaussian white noise with zero mean and deviation
0.3 is added to the target value f̂(x). All algorithms are used to produce the models with
Gaussian kernel to approximate the real and imaginary parts of the target values. It is a
one-input and two-output problem. For SOCPL1, SOCPL2 and MRVM, the parameters
are selected by grid search and the results are as below.

Table 1. The parameters of three algorithms in complex function approximation

algorithm Insensitive ε bound Tradeoff parameter Kernel width
SOCPL1 0.2 100 0.4
SOCPL2 0.3 100 0.3
MRVM – – 0.2

Table 2. The averaged results of different methods on complex function approximation

Training Error Test Error Model Size Time Consuming(s)
SCOPL1 0.093 0.099 191.7 12.4
SCOPL2 0.085 0.101 210.3 11.2
MRVM 0.096 0.098 10.7 4.2
MTKM 0.089 0.091 5.3 0.4

Figure 1 shows the performance of MTKM, SOCPL1, SOCPL2 and MRVM. The circles
in the figures show the support vectors (SVs), relevant vectors (RVs) and kernel centers
of the regression models. The number of circles in each figure indicates the size of the
regression models, which measures the sparseness. This experiment is repeated for 30
times and the average results are listed in Table 2. It indicates that the speed of the
proposed MTKM is the greatest in all the algorithms, partly because of the efficient greedy
algorithm applied in MTKM. Besides, MTKM produces the sparsest model with good
generality, due to the flexible kernel width turning scheme rather than the fix parameter
for all the regression terms in the other algorithms.



1666 X. CHEN, L. FU AND Z. LIU

(a) (b)

(c) (d)

Figure 1. The performances of all algorithms in complex function approx-
imation: (a) the performance of MTKM in Experiment 4.1, (b) the perfor-
mance of SOCPL1 in Experiment 4.1, (c) the performance of SOCPL2 in
Experiment 4.1, (d) the performance of MRVM in Experiment 4.1

4.2. Lorenz data set [19]. The second target system is the Lorenz attractor, which is
described as

dpx

dt
= σ(py − px),

dpy

dt
= px(r − pz) − py,

dpz

dt
= pxpy − bpz.

Here the state of the system is initialized as x = [px, py, pz]
T = [1, 2, 3]T . The system

factors are selected as σ = 3, r = 26.5, b = 1, τ = 0.02s. This study generates a total of
1600 data samples. And the 600th-999th data points are used as a training set, and the
1000th to the 1166 data samples are used for testing. The first 599 samples are discarded
because they are in the transient state and their behaviors are completely different from
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the remaining samples. We use the current and previous state xt and the previous state
xt−τ to predict the eight-step-ahead state xt+8τ . Thus, the target system is a three-output
system. We normalize all data point to mean of zero and unit standard deviation. Besides,
Gaussian white noise with σ = 0.5 is added to the samples. As in Experiment 4.1, we
repeat this experiment for 30 times, and the averaged results are listed in Table 3.

Table 3. The averaged results of different methods on Lorenz system modeling

Training Error Test Error Model Size Time Consuming (s)
SCOPL1 9.765 10.832 202.7 242.1
SCOPL2 8.061 11.475 361.3 291.2
MRVM 12.261 11.238 95.7 264.4
MTKM 9.716 9.914 17.3 24.5

4.3. Seismic record data set. The east Texas seismic record data set [20] is used to
evaluate the proposed MTKM algorithm. Seismic records are the reflected signals when
the artificial explosion wave propagates through earth layers. The strength of the reflected
signal depends on the impedance contrast between adjacent layers. This data set is known
to contain high noisy amplitude traces. This is due to the use of bad geophones. Seismic
records usually contain the information of the complex earth layers structure, which makes
them time-varying dynamics signals. The left panel in Figure 2 shows the seismic section.
The horizontal axis represents the offset of each seismic receiver (recorder) from the source
where each records a trace with respect to the two-way travel time (vertical axis). There
are totally 33 traces in this data set, which result in a 33-output regression problem. The
middle and right panels in Figure 2 show the regression model and the corresponding
residual. It indicates that MTKM can obtain a good approximation for seismic records.

Figure 2. Performance of MTKM on seismic records approximation
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5. Conclusions. This paper introduces a novel multi-output regression model with tun-
able kernel, MTKM. This new algorithm is capable of approximating the multiple traces
of signals simultaneously. Compared with the state-of-the-art methods, the new scheme
can result in very sparse kernel model with good generality. As a continuous effort, our
future work will focus on the criteria to build the multi-output kernel regression machines,
such as L1 and Lp criteria.
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