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Abstract. In Massive multiple-input multiple-output (MIMO) systems, zero-forcing
(ZF) detection algorithm has attracted attention again for its low computational com-
plexity. However, when the number of antennas is great or infinite, the inversion of the
high order number of the channel matrix will bring great computational complexity to the
ZF detection algorithm. In this paper, we propose a low complexity ZF algorithm based
on Neumann series approximation, which converts the multiplication of large matrices
into the multiplication of the diagonal matrix and the hollow matrix. And a method to
simplify the optimization factor is proposed to improve the convergence speed and reduce
the delay effectively. The simulation results show that the performance of the improved
algorithm is approaching to the traditional ZF algorithm with the increase of the receiving
antennas, and the computational complexity is reduced from O(K3) to O(K2), where K
is the number of users.
Keywords: Massive MIMO, ZF detection, Neumann series approximation, Optimiza-
tion factor

1. Introduction. Wireless communication technology has entered the era of 4G/5G
communication, and people’s demand for wireless communication system to transmit data
at a higher rate is increasing. Massive MIMO System, which equips large-scale antenna
arrays with hundreds of antennas at the base station (BS) can significantly improve the
capacity [1,2], spectrum utilization and system performance of communication systems
without increasing system bandwidth. So that, Massive MIMO has been considered as
one of the key technologies in modern wireless communication [3].

With the increasing number of antennas BS and the number of users, the complexity of
the system becomes one of the key problems that affect the realization of Massive MIMO
system [4]. As the optimal detector, complexity of maximum likelihood (ML) detector
increases exponentially with the increase of the modulation orders and the transmission
antenna number. The RZF (Regular ZF) precoding or linear MMSE (minimum mean-
square error) detection is used to obtain the performance of the approximation capacity
when the system is equipped with an order magnitude lower number of antennas in [5].
However, the linear detection algorithm involves complex matrix inversion, and its com-
putational complexity is still high. To simplify the matrix inversion operation, scholars
put forward the Richardson method is utilized to avoid the matrix inversion in [6]. A
method based on the Neumann series approximation algorithm to convert the inverse of
the matrix into truncated polynomial summation, which reduces the complexity is pro-
posed in [7]. However, the large matrix multiplication brings a high degree of complexity
and computational optimization factor also leads to the system delay, especially when the
number of receiving antennas is far more than the number of users [8]. And [9] proposes
a low complexity algorithm for beamforming based on ZF.
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In order to further reduce the computational complexity, the improved ZF algorithm
based on the Neumann series expansion [10] is proposed in this paper, which converts the
large ZF filter matrix [11] into the sum of the diagonal matrix and the hollow matrix. In
addition, we propose a simplified expression of the optimization factor to accelerate the
convergence rate. The simulation results show that the proposed algorithm can reduce
the computational complexity with the better performance.

2. System Model. We consider the typical uplink transmission of a Massive MIMO
system, which employs M antennas at BS to communicate with K single-antenna users
(M >> K). Meanwhile, let H denote the channel matrix, where the first (i, j) ele-
ment hji represents the channel gain between the ith user and the jth receiving antenna,
i = 1, 2, . . ., K; j = 1, 2, . . .,M . The user transmission signal and the corresponding re-
ception signal are denoted as x = [x1, x2, . . ., xK ]T and y = [y1, y2, . . ., yM ]T , where xi and
yj represent the transmitting signal of the ith user and the receiving signal of the jth
receiving antenna, respectively. nj represents the additive Gauss white noise of the jth
receiving antenna with a variance of δ2

n, then the N×K MIMO system can be represented
as:

y = Hx + n = h1x1 + h2x2 + · · · + hKxK + n (1)

where n = [n1, n2, . . ., nM ]T , hi denotes the ith column vector of the channel matrix H.
hi = [h1i, h2i, . . ., hMi]

T , i = 1, 2, . . ., K; j = 1, 2, . . .,M .

3. Neumann Series Approximation. The most important computational complexity
of the detection algorithm lies in the matrix inverse operation. Specifically, if the inverse
matrix of the K × K-dimensional matrix Z is required the O(K3) operand, then the
complexity of inverse operation will increase rapidly with the growing number of K.
Therefore, an effective method of inversion is essential to pursue the cost-effectiveness
of hardware implementation. Stewart proposed the Neumann series expansion algorithm
[10].

The Neumann series expansion of matrix Z−1 can be:

Z−1 =
∞∑

n=0

(
X−1 (X − Z)

)n
X−1 (2)

where the conditions need to be satisfied with lim
n→∞

(I − X−1Z)
n

= 0 or lim
n→∞

(
I − ZX−1

)n

= 0 and X is an invertible matrix.
Take the first L items to approximate Z−1 in (2):

Z−1
L =

L−1∑
n=0

(
X−1 (X − Z)

)n
X−1 (3)

Then, the matrix Z is converted into the sum of the diagonal matrix D and the hollow
matrix E (all the elements on the diagonal are zero), that is Z = D + E, X = D which
applies into Formula (3):

Z−1
L =

L−1∑
n=0

(
−D−1E

)n
D−1 (4)

When L = 2,

Z−1
2 = D−1 − D−1ED−1 (5)

It needs O(K2) operation in (5), where K is the dimension of matrix. Compared with
the complexity O(K3) of the traditional matrix direct inversion, the complexity of the
Neumann series approximate inversion algorithm is greatly reduced.
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4. The Proposed Improved ZF-opt Detection Algorithm. The filtering matrix of
ZF detection algorithm is [11]:

WZF =
(
HHH

)−1
HH (6)

where (·)H denotes the conjugate transpose. The complexity of ZF detection algorithm is
O(K3), and we apply the Neumann approximation algorithm in reducing the complexity
of the ZF detection algorithm.

WZF is simplified by using Neumann series approximation [12,13]:

WZF ≈

[
L−1∑
n=0

αn

(
HHH

)n

]
HH (7)

where L is the term of the approximation, α = [α0, α1, . . ., αL−1] is optimization factor.

4.1. Based on diagonal matrix decomposition. When the number of users K is large,
the large matrix (HHH) multiplication still brings greater computational complexity. In
order to further reduce the complexity of the detection algorithm, we decompose the large
matrix HHH. Let RZF = HHH, where H is independent with Gaussian distribution. In
the Massive MIMO system, the number of antennas at base station (BS) is greater than
the number of users M > K, and the matrix RZF becomes a diagonally dominant matrix
[14]. RZF can be decomposed as:

RZF = DZF + EZF

=


hH

1 h1 0 · · · 0

0 hH
2 h2 · · · 0

...
...

. . .
...

0 02 · · · hH
KhK

 +


0 hH

1 h2 · · · hH
1 hK

hH
2 h1 0 · · · hH

2 hK

...
...

. . .
...

hH
Kh1 hH

Kh2 · · · 0

 (8)

where DZF is the main diagonal matrix of the matrix RZF , EZF is the hollow matrix with
all the elements zero on the diagonal. Neumann series approximation of R−1

ZF is derived
as:

R−1
ZF =

(
HHH

)−1
= (DZF + EZF )−1 =

∞∑
n=0

(
−D−1

ZFEZF

)n
D−1

ZF (9)

Substituting Formula (9) into Formula (6):(
HHH

)−1
HH =

[
∞∑

n=0

(
−D−1

ZFEZF

)n
D−1

ZF

]
HH

≈

[
L−1∑
n=0

αn

(
−D−1

ZFEZF

)n
D−1

ZF

]
HH

(10)

Formula (10) shows that the inverse of the large matrix (HHH)−1 is transformed into
the sum of the product of (−D−1

ZFEZF ), and the inverse of the diagonal matrix requires
only the reciprocal of the elements on the diagonal, so the Neumann approximation algo-
rithm can reduce the inverse computational complexity effectively. And the appropriate
optimization factor αn in the next section will improve the accuracy of the approximation
algorithm and accelerates the convergence rate of the algorithm.

4.2. Optimization factor. This section discusses the value of the optimization factor
α = [α0, α1, . . ., αL−1], which can improve the detection performance on the basis of fast
convergence. Let: [

L−1∑
n=0

αn

(
−D−1

ZFEZF

)n

]
(DZF + EZF )−1 ≈ I (11)
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where I is identity matrix. Let AZF = −D−1
ZFEZF , and the left side of Formula (11) is:[

L−1∑
n=0

αn

(
−D−1

ZFEZF

)n

]
(DZF + EZF )−1

=
L−1∑
n=0

αn

(
−D−1

ZFEZF

)n −
L−1∑
n=0

αn

(
−D−1

ZFEZF

)n+1
=

L−1∑
n=0

αn

(
An

ZF − An+1
ZF

) (12)

For the lower order plays a main role in the convergence, it will be fast convergence if |αn

(An
ZF−An+1

ZF )| close to 1/L, as:

αn ≈ 1

L ×
∣∣(An

ZF − An+1
ZF

)∣∣ =
1

L × |An
ZF |

∣∣(I + D−1
ZFEZF

)∣∣ (13)

The matrix (I + D−1
ZFEZF ) denotes with H = [h1, h2, . . ., hK ] as:

I + D−1
ZFEZF =



1
hH

1 h2

hH
1 h1

· · · hH
1 hK

hH
1 h1

hH
2 h1

hH
2 h2

1 · · · hH
2 hK

hH
2 h2

...
...

. . .
...

hH
Kh1

hH
KhK

hH
Kh2

hH
KhK

· · · 1


(14)

As M → ∞, (hH
i hj/h

H
i hi) → 0, where i, j = 1, 2, . . ., K (i ̸= j), then Formula (14) → IK .

Let AZF = −D−1
ZFEZF , then the determinant of An

ZF is |An
ZF | = (−1)Kn|D−1

ZF |n|EZF |n.
According to Marchenko-Pastur’s law [15], as M , K → ∞, the maximum and minimum
eigenvalues of the matrix EZF are:

λmax (EZF ) → 1

β
+

2√
β

, λmin (EZF ) → 1

β
− 2√

β
(15)

where β = M/K. In order to reduce the influence of the higher order (−D−1
ZFEZF )n,

it needs to accelerate the convergence of Formula (10), and we choose the maximum
eigenvalue λmax(EZF ) of the matrix EZF , we can obtain that:

|EZF |n =

∣∣∣∣ 1

β
+

2√
β

∣∣∣∣Kn

(16)

αn =
1

L
(
1/β + 2

/√
β
)Kn

(17)

For the dimensions K and M in the actual Massive MIMO system are finite, the
approximation of Equation (17) is not very accurate. Therefore, it is very necessary to
amend the factor αn. When n: 0 → L− 1, the lower order part of (−D−1

ZFEZF )n contains
the vast majority information of the channel matrix H, and the higher order part of
(−D−1

ZFEZF )n is mainly used to modify the approximate precision of the algorithm, so
the modifying factors need to converge quickly, which meets the following. (1) Let α0 = 1
to ensure that the first order contains all the information. (2) As the increasing number
of n, the value of αn (n ≥ 1) decreases gradually. Formula (17) is simplified as:

αn =
1((

1/β + 2
/√

β
)
n + 1

)n (18)

The complex inverse operation was converted into the Neumann approximation to reduce
the complexity of the detection and the method of optimization factor was proposed to
further reduce the complexity by ensuring the detection performance.
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4.3. The specific description of the proposed algorithm.

Algorithm 1 The proposed improved ZF-opt detection algorithm
1. Get the filtering matrix of ZF detection from [11].

WZF =
(
HHH

)−1
HH

2. Let RZF = HHH, then decompose RZF based on diagonal matrix decomposition
RZF = DZF + EZF

3. Neumann series approximation of R−1
ZF is derived as

R−1
ZF = (DZF + EZF )−1 =

∞∑
n=0

(
−D−1

ZFEZF

)n
D−1

ZF

4. Use Neumann series approximation, get(
HHH

)−1
HH ≈

[
L−1∑
n=0

αn

(
−D−1

ZFEZF

)n
D−1

ZF

]
HH

5. Improve the optimization factor

αn =
1((

1/β + 2
/√

β
)
n + 1

)n

6. Use the improved αn to solve WZF .

4.4. Complexity analysis. The complexity of the algorithm can usually be measured
by the number of multipliers, dividers, and adders. The complexity of the ZF detec-
tion algorithm is the inverse operation of the matrix and the main sources of the inverse
computational complexity are multipliers and adders. Therefore, the complexity of the
algorithm is compared with the Cholesky decomposition [16] based on the exact matrix
inversion operation. And the number of real multipliers (A multiplicative multiplier is
equivalent to four real multipliers) and real adders (A complex number of adder is equiv-
alent to two real adders) of low complexity ZF detection algorithm is proposed in this
paper. The statistical results are shown in Table 1.

Table 1. Complexity comparison

Algorithms Multiplications Additions

L = 2 Approximate 4K2 − 4K 2K2 − 2K

L = 3 Approximate 8K3 + 4K2 − 2K 4K3 + 2K2 − K

Cholesky Decomposition 16K3 + 4K2 + K 8K3 + 3K2 + 2K

As Table 1 shows that the complexity of the improved algorithm is O(K2) as L = 2, and
when L = 3, the complexity of the improved algorithm and the matrix exact inversion
based on Cholesky decomposition are all O(K3) as L = 3. As we choose L = 2, the
complexity of the improved ZF algorithm is far lower than the exact inverse method with
a small loss of performance.

5. Performance Simulation. Based on the Massive MIMO uplink system model, the
QPSK modulation scheme is employed and it is assumed that the channel is a Rayleigh
fading channel and the channel state information is known at the receiver; let the noise
be Additive Gaussian white noise with each element assumed to be independent and
identically distributed; 16, 32, 64, receiving antennas are respectively arranged at BS
with 8 single antenna users. The simulation results are shown in Figure 1, where improved
ZF-opt represents an improved ZF detection algorithm with optimization factor and ZF
represents a traditional ZF detection algorithm.

Figure 1 shows the decoding performance simulation of the improved ZF algorithm
with optimization factor (improved ZF-opt) in different M when L = 1, 2, 3, respectively.
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Figure 1. When L = 1, 2, 3, performance comparison of the improved
ZF-opt algorithm

Figure 2. SER performance comparison for whether having optimization factor

In Figure 1, with the increase of L, the performance of the improved ZF-opt is improved
at the same M . Especially in the large M , the improved ZF-opt detection algorithm as
L = 2 has a significant improvement comparing with L = 1. As the increase of M , the
performance of improved ZF-opt detection algorithm is also getting better at the same L.

Figure 2 shows that the performance of the improved ZF-opt detection algorithm as
L = 2 is close to the performance of improved ZF algorithm without the optimization
factor (improved ZF) as L = 3. It is clear that with the increased number of the receiv-
ing antennas, the SER (symbol error rate) performance of both algorithms are greatly
improved. The complexity of both algorithm is O(K2) as L = 2, and when L = 3, the
complexity is O(K3). Therefore, we choose L = 2 to obtain trade-off between detection
performance and algorithm complexity in this paper.

The SER performance comparison between the proposed improved ZF-opt detection al-
gorithm, the improved ZF algorithm and the traditional ZF detection algorithm is shown
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Figure 3. Comparison of detection performance of three algorithms

in Figure 3. It can be concluded from Figure 3 that the performance of the proposed
improved ZF-opt detection algorithm is obviously better than that of the improved ZF
algorithm. With the increased number of the receiving antennas, the SER performance of
the improved ZF-opt algorithms becomes closer to that of the traditional ZF algorithm.
The simulation results show that the optimization factor can improve the detection per-
formance greatly.

6. Conclusions. In this paper, the optimization factor expression is obtained by the
method of fast convergence of the improved algorithm, and a simplified form of the opti-
mization factor is given as well, which greatly decreases the delay caused by the calculation
of the optimization factor. Simulation results show that with the increasing number of re-
ceiving antennas at BS, the performance of the proposed algorithm gradually approached
the traditional ZF detection algorithm while the complexity is reduced from O(K3) to
O(K2). In this paper, the channel status information (CSI) is assumed perfectly known;
in the future research, the case of imperfect CSI will be studied.
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