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Abstract. The simple repetitive control system proposed by Yamada et al. is a type of
servomechanism for the periodic reference input. In addition, simple repetitive control
systems make transfer functions from the periodic reference input to the output and from
the disturbance to the output have finite numbers of poles. Yamada et al. clarified the
parameterization of all stabilizing simple repetitive controllers. Recently, the parameteri-
zation of all robust stabilizing simple repetitive controllers for the plant with uncertainty
was clarified. However, they did not clarify the parameterization of all robust stabilizing
simple repetitive controllers for multiple-input/multiple-output plants. Since many real
plants include uncertainty and have multiple-input and multiple-output, this is the impor-
tant problem to solve. The purpose of this paper is to propose the parameterization of all
robust stabilizing simple repetitive controllers for multiple-input/multiple-output plants.
Keywords: Repetitive control, Uncertainty, Robust stability, Parameterization, Finite
numbers of poles, Multiple-input/multiple-output plants

1. Introduction. A repetitive control system is a type of servomechanism for periodic
reference inputs. That is, the repetitive control system follows the periodic reference
input without steady state error, even if a periodic disturbance or an uncertainty exists
in the plant [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15]. Many design methods for repetitive
control systems for strictly proper plants have been given [3, 4, 5, 6, 7, 8, 9, 10, 13].
These studies are divided into two types. One uses a low-pass filter [3, 4, 5, 6, 7, 8, 9, 10]
and the other uses an attenuator [13]. The latter is difficult to design because it uses
a state variable time-delay in the repetitive controller [13]. The former has a simple
structure and is easily designed. Therefore, the former type of repetitive control system
is called the modified repetitive control system [3, 4, 5, 6, 7, 8, 9, 10]. Recently, Chen
and Tomizuka proposed a structural configuration of the internal model in repetitive
control, so that designers have more flexibility in the repetitive loop-shaping design, and
the amplification of nonrepetitive errors can be reduced [11]. While Li has used a new
method affine parameterization perspective instead of an internal model perspective to
derive the controller, this method makes the classical prototype repetitive control scheme
extended to the angle-domain repetitive disturbance [12].

Using the modified repetitive controllers in [3, 4, 5, 6, 7, 8, 9, 10], even if the plant
does not include time-delays, transfer functions from the periodic reference input to the
output and from the disturbance to the output have infinite numbers of poles. This makes
it difficult to specify the input-output characteristic and the disturbance attenuation
characteristic. From the practical point of view, it is desirable that these characteristics
should be easy to specify. Therefore, these transfer functions should have finite numbers
of poles.
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In some cases, the uncertainties in the plant make the control system unstable. When
the uncertainties in the plant exist, the stability of the control system is known as robust
stability problem [21, 22, 23]. Yamada et al. proposed the parameterization of all ro-
bust stabilizing simple repetitive controllers for plants with uncertainties [23]. However,
the parameterization in [23] cannot be applied to multiple-input/multiple-output plants,
because this parameterization is obtained using the characteristics of single-input/single-
output systems. For multiple-input/multiple-output time-delay plants, Sakanushi and Ya-
mada proposed the parameterization of all robust stabilizing simple repetitive controllers
[24] using the idea of predictive control. However, the method in [24] cannot apply for
non-time-delay plants. Many real plants include multiple-input and multiple-output. In
addition, the parameterization is useful to design stabilizing controllers [17, 18, 19, 20].
Therefore, the problem of obtaining the parameterization of all robust stabilizing simple
repetitive controllers for multiple-input/multiple-output plants is important.

In this paper, we propose the parameterization of all robust stabilizing simple repetitive
controllers for multiple-input/multiple-output plants such that the controller works as a
robust stabilizing modified repetitive controller and transfer functions from the periodic
reference input to the output and from the disturbance to the output have finite numbers
of poles. Obtained simple repetitive controllers make transfer functions from the reference
input to the output have finite number of poles, and it is easy to specify the input-output
characteristic and the disturbance attenuation characteristic. In addition, even if the
plant has uncertainty, this controller guarantees the stability of the control system. Using
obtained parameterization, we can easily design stabilizing simple repetitive controllers
for multiple-input/multiple-output plants as shown in Section 4.

2. Robust Stabilizing Simple Repetitive Control Systems and Problem For-
mulation. Consider the unity feedback control system in{

y = G(s)u + d
u = C(s)(r − y)

, (1)

where G(s) ∈ Rm×p(s) is the plant, C(s) is the controller, u ∈ Rp is the control input,
d ∈ Rm is the disturbance, y ∈ Rm is the output and r ∈ Rm is the periodic reference
input with period T satisfying

r(t + T ) = r(t) (∀t ≥ 0). (2)

It is assumed that m ≤ p. The nominal plant of G(s) is denoted by Gm(s) ∈ Rm×p(s).
Both G(s) and Gm(s) are assumed to have no zero or pole on the imaginary axis. In
addition, it is assumed that the number of poles of G(s) in the closed right half plane
is equal to that of Gm(s). The relation between the plant G(s) and the nominal plant
Gm(s) is written as

G(s) = (I + ∆(s))Gm(s), (3)

where ∆(s) is an uncertainty. The set of ∆(s) is all rational functions satisfying

σ̄ {∆(jω)} < |WT (jω)| (∀ω ∈ R+), (4)

where WT (s) is a stable rational function.
The robust stability condition for the plant G(s) with uncertainty ∆(s) satisfying (4)

is given by

∥T (s)WT (s)∥∞ < 1, (5)

where T (s) is the complementary sensitivity function written by

T (s) = (I + Gm(s)C(s))−1 Gm(s)C(s). (6)
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According to [3, 4, 5, 6, 7, 8, 9, 10], in order for the output y to follow the periodic
reference input r with period T in (1) with small steady state error, the controller C(s)
must have the following structure

C(s) = C1(s) + C2(s)e
−sT

(
I − q(s)e−sT

)−1
, (7)

where q(s) ∈ Rm×m(s) is a low-pass filter satisfying q(0) = I and rank q(s) = m, and
C1(s) ∈ Rp×m(s) and C2(s) ∈ Rp×m(s) satisfy rank C2(s) = m. In the following, e−sT (I −
q(s)e−sT )−1 defines the internal model for the periodic signal with period T . According
to [3, 4, 5, 6, 7, 8, 9, 10], if the low-pass filter q(s) satisfies

σ̄ {I − q(jωi)} ≃ 0 (∀i = 0, . . . , Nmax) , (8)

where ωi are frequency components of the periodic reference input r written by

ωi =
2π

T
i (i = 0, . . . , Nmax) (9)

and ωNmax is the maximum frequency component of the periodic reference input r, then
the output y in (1) follows the periodic reference input r with small steady state error. The
controller written by (7) is called the modified repetitive controller [3, 4, 5, 6, 7, 8, 9, 10].

Using the modified repetitive controller C(s) in (7), transfer functions from the periodic
reference input r to the output y and from the disturbance d to the output y in (1) are
written as

y = (I + G(s)C(s))−1 G(s)C(s)r

= (I + ∆(s))Gm(s)
{
C1(s) + (C2(s) − C1(s)q(s)) e−sT

} [
I + (I + ∆(s)) Gm(s)C1(s)

−
[{

I + (I + ∆(s))Gm(s)C1(s)
}
q(s) − (I + ∆(s))Gm(s)C2(s)

]
e−sT

]−1
r (10)

and

y = (I + G(s)C(s))−1 d

=
(
I − q(s)e−sT

) [
I + (I + ∆(s)) Gm(s)C1(s)

−
[{

I + (I + ∆(s))Gm(s)C1(s)
}
q(s) − (I + ∆(s))Gm(s)C2(s)

]
e−sT

]−1
d, (11)

respectively. Generally, transfer functions from the periodic reference input r to the
output y in (10) and from the disturbance d to the output y in (11) have infinite numbers
of poles, even if ∆(s) = 0. When transfer functions from the periodic reference input r to
the output y and from the disturbance d to the output y have infinite numbers of poles,
it is difficult to specify the input-output characteristic and the disturbance attenuation
characteristic. From the practical point of view, it is desirable that the input-output
characteristic and the disturbance attenuation characteristic are easily specified. In order
to specify the input-output characteristic and the disturbance attenuation characteristic
easily, transfer functions from the periodic reference input r to the output y and from the
disturbance d to the output y are desirable to have finite numbers of poles.

Definition 2.1. (Robust stabilizing simple repetitive controller for multiple-input/multi-
ple-output plants.) We call the controller C(s) a “robust stabilizing simple repetitive con-
troller for multiple-input/multiple-output plants”, if following expressions hold true:

1) The controller C(s) works as a modified repetitive controller. That is, the controller
C(s) is written by (7), where C1(s) ∈ Rp×m(s), C2(s) ∈ Rp×m(s) satisfy rank C2(s) =
m and q(s) ∈ Rm×m(s) satisfies q(0) = I and rank q(s) = m.

2) When ∆(s) = 0, the controller C(s) makes transfer functions from the periodic refer-
ence input r to the output y in (1) and from the disturbance d to the output y in (1)
have finite numbers of poles.

3) The controller C(s) satisfies the robust stability condition in (5).
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3. The Parameterization of all Robust Stabilizing Simple Repetitive Con-
trollers for Multiple-Input/Multiple-Output Plants. In this section, we clarify
the parameterization of all robust stabilizing simple repetitive controllers for multiple-
input/multiple-output plants defined in Definition 2.1.

In order to obtain the parameterization of all robust stabilizing simple repetitive con-
trollers, we must see that the controller C(s) holds (5). The problem of obtaining the
controller C(s), which is not necessarily a simple repetitive controller, satisfying (5) is
equivalent to the following H∞ control problem. In order to obtain the controller C(s)
satisfying (5), we consider the control system shown in Figure 1. P (s) is selected such
that the transfer function from w to z in Figure 1 is equal to T (s)WT (s). The state space
description of P (s) is, in general,

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D12u(t)

y(t) = C2x(t) + D21w(t)

, (12)

where A ∈ Rn×n, B1 ∈ Rn×r, B2 ∈ Rn×p, C1 ∈ Rq×n, C2 ∈ Rm×n, D12 ∈ Rq×p, D21 ∈
Rm×r, x(t) ∈ Rn, w(t) ∈ Rr, z(t) ∈ Rq, u(t) ∈ Rp and y(t) ∈ Rm. P (s) is called the
generalized plant. P (s) is assumed to satisfy the following assumptions [21].

1) (C2, A) is detectable, and (A, B2) is stabilizable.
2) D12 has full column rank, and D21 has full row rank.

3) rank

[
A − jωI B2

C1 D12

]
= n + p (∀ω ∈ R+),

rank

[
A − jωI B1

C2 D21

]
= n + m (∀ω ∈ R+).

w z

u yP(s)

C(s)

Figure 1. Block diagram of H∞ control problem

Under these assumptions, the parameterization of all robust stabilizing simple repetitive
controllers for multiple-input/multiple-output plants is given by the following theorem.

Theorem 3.1. If simple repetitive controllers satisfying (5) exist, both

X
(
A − B2D

†
12C1

)
+

(
A − B2D

†
12C1

)T

X + X
{

B1B
T
1 − B2

(
DT

12D12

)−1
BT

2

}
X

+
(
D⊥

12C1

)T
D⊥

12C1 = 0 (13)

and

Y
(
A − B1D

†
21C2

)T

+
(
A − B1D

†
21C2

)
Y + Y

{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
Y

+ B1D
⊥
21

(
B1D

⊥
21

)T
= 0 (14)

have solutions X ≥ 0 and Y ≥ 0 such that

ρ (XY ) < 1 (15)
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and both

A − B2D
†
12C1 +

{
B1B

T
1 − B2

(
DT

12D12

)−1
BT

2

}
X (16)

and

A − B1D
†
21C2 + Y

{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
(17)

have no eigenvalue in the closed right half plane. Using X and Y , the parameterization
of all robust stabilizing simple repetitive controllers satisfying (5) is given by

C(s) =
(
Z11(s)Q(s) + Z12(s)

)(
Z21(s)Q(s) + Z22(s)

)−1

=
(
Q(s)Z̃21(s) + Z̃22(s)

)−1 (
Q(s)Z̃11(s) + Z̃12(s)

)
, (18)

where Zij(s) (i = 1, 2; j = 1, 2) and Z̃ij(s) (i = 1, 2; j = 1, 2) are written by[
Z11(s) Z12(s)

Z21(s) Z22(s)

]
=

[
C12(s) − C11(s)C

−1
21 (s)C22(s) C11(s)C

−1
21 (s)

−C−1
21 (s)C22(s) C−1

21 (s)

]
(19)

and [
Z̃11(s) Z̃12(s)

Z̃21(s) Z̃22(s)

]
=

[
C21(s) − C22(s)C

−1
12 (s)C11(s) C−1

12 (s)C11(s)

−C22(s)C
−1
12 (s) C−1

12 (s)

]
, (20)

and satisfy [
Z̃22(s) Z̃12(s)

Z̃21(s) Z̃11(s)

][
Z11(s) −Z12(s)

−Z21(s) Z22(s)

]
= I

=

[
Z11(s) −Z12(s)
−Z21(s) Z22(s)

] [
Z̃22(s) Z̃12(s)

Z̃21(s) Z̃11(s)

]
, (21)

Cij(s) (i = 1, 2; j = 1, 2) are given by[
C11(s) C12(s)

C21(s) C22(s)

]
=

 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

 , (22)

Ac = A + B1B
T
1 X − B2

(
D†

12C1 + E−1
12 BT

2 X
)

− (I − Y X)−1
(
B1D

†
21 + Y CT

2 E−1
21

) (
C2 + D21B

T
1 X

)
,

Bc1 = (I − Y X)−1
(
B1D

†
21 + Y CT

2 E−1
21

)
,

Bc2 = (I − Y X)−1 (
B2 + Y CT

1 D12

)
E

−1/2
12 ,

Cc1 = −D†
12C1 − E−1

12 BT
2 X, Cc2 = −E

−1/2
21

(
C2 + D21B

T
1 X

)
,

Dc11 = 0, Dc12 = E
−1/2
12 , Dc21 = E

−1/2
21 , Dc22 = 0,

E12 = DT
12D12, E21 = D21D

T
21

and Q(s) ∈ Hp×m
∞ is any function satisfying ∥Q(s)∥∞ < 1 and written by

Q(s) =
(
Qn1(s) + Qn2(s)e

−sT
) (

Qd1(s) + Qd2(s)e
−sT

)−1
, (23)

Qn2(s) = G2d(s)Q̄(s) ∈ RHp×m
∞ (24)
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and

Qd2(s) = −G1d(s)G2n(s)Q̄(s) ∈ RHm×m
∞ . (25)

Here, G1n(s) ∈ RHm×m
∞ , G1d(s) ∈ RHm×m

∞ , G2n(s) ∈ RHm×p
∞ and G2d(s) ∈ RHp×p

∞ are
coprime factors satisfying

Z22(s) + Gm(s)Z12(s) = G1n(s)G−1
1d (s) (26)

and

G−1
1n (s) (Z21(s) + Gm(s)Z11(s)) = G2n(s)G−1

2d (s). (27)

Qn1(s) ∈ RHp×m
∞ , Qd1(s) ∈ RHm×m

∞ and Q̄(s) ∈ RHp×m
∞ are any functions satisfying

σ̄ {Z22(0) (Qd1(0) + Qd2(0)) + Z21(0) (Qn1(0) + Qn2(0))} = 0, (28)

rank
(
Qn2(s) − Qn1(s)Q

−1
d1 (s)Qd2(s)

)
= m (29)

and rank Q̄(s) = m.

4. Numerical Example. In this section, a numerical example is illustrated to show the
effectiveness of the proposed approach.

Consider the problem to design a robust stabilizing modified repetitive controllers for
the set of plants G(s) written by (3), where

Gm(s) =


s + 3

(s − 2)(s + 9)

2

(s − 2)(s + 9)

s + 3

(s − 2)(s + 9)

s + 4

(s − 2)(s + 9)

 (30)

and

WT (s) =
s + 400

550
. (31)

The period T of the periodic reference input r is given by T = 4[sec].
Using Theorem 3.1, we have the parameterization of all robust stabilizing simple repet-

itive controllers. We settle the parameters in (23) as Qd1(s) = I and Qn1(s) = −500I. In
addition, Qn2(s) and Qd2(s) are settled by (24) and (25), where Q̄(s) is given by

Q̄(s) = H†
o(s)q̄r(s) (Qd1(s) − C22(s)Qn1(s)) (32)

where Ho ∈ RHp×m
∞ is an outer function of H(s) written by

H(s) = G1d(s)G2n(s) + C22(s)G2d(s) (33)

satisfying

H(s) = Hi(s)Ho(s), (34)

H†
o(s) is pseudo inverse of Ho(s) satisfying H†

o(s)Ho(s) = I and q̄r(s) is a low-pass filter
written by

q̄r(s) =


1

0.01s + 1
0

0
1

0.01s + 1

 . (35)

Using above-mentioned parameters, we have a robust stabilizing modified repetitive
controller. When ∆(s) is written by

∆(s) =


s − 100

s + 500

−100

s + 600
−200

s + 500

s − 100

s + 600

 (36)
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and the designed robust stabilizing modified repetitive controller C(s) is used, the tracking
error e(t) = r(t) − y(t) in (1) for the periodic reference inputs r

r(t) =

[
r1(t)
r2(t)

]
=

 sin

(
πt

2

)
2 sin

(
πt

2

)
 (37)

is shown in Figure 2. Here, the broken line shows the response of the periodic reference
input r1(t), the dotted line shows that of the periodic reference input r2(t), the solid line
shows that of the error e1(t) and the dotted and broken line shows that of the error e2(t).
Figure 2 shows that the output y follows the periodic reference input r with small steady
state error, even if the plant has uncertainty ∆(s).

0 2 4 6 8 10 12 14 16 18 20
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r 1(t
),

 r 2(t
),

 e
1(t

),
 e

2(t
)

r
1
(t)

r
2
(t)

e
1
(t)

e
2
(t)

Figure 2. Response of the error e(t) for the reference input r(t)

In this way, we find that it is easy to design a robust stabilizing simple repetitive
controller using Theorem 3.1.

5. Conclusions. In this paper, we proposed the parameterization of all robust stabiliz-
ing simple repetitive controllers for multiple-input/multiple-output plants such that the
controller works as a robust stabilizing modified repetitive controller and transfer func-
tions from the periodic reference input to the output and from the disturbance to the
output have finite numbers of poles. Since the robust stabilizing simple repetitive control
system has merits, for example, the stability of control system with uncertainty is guar-
anteed and the robust stabilizing simple repetitive control system can be easily designed,
the practical application of the robust stabilizing simple repetitive control is expected.
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