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Abstract. The bandwidth packing problem (BWP) that arises in the area of telecom-
munication is considered. We additionally address demand uncertainty in the BWP. In
order to produce qualified solutions under such an uncertainty, we apply robust optimiza-
tion technique. The resulting robust BWP becomes difficult integer program. Thus, we
propose an efficient algorithm based on the Dantzig-Wolfe reformulation of the robust
BWP. Computational results show that our algorithm outperforms commercial solvers.
Keywords: Bandwidth packing, Robust optimization, Exact algorithm, Branch-and-
price

1. Introduction. Bandwidth packing problems commonly arise in the area of telecom-
munication networks. When calls are given along a fixed bandwidth between a pair of
nodes, the goal is to determine the selection of calls and the assignment of a single path to
each selected call such that edge capacities are not exceeded and profit from selected calls
is maximized. The single path requirement makes the BWP NP-hard. Various solution
approaches have been considered to solve the BWPs, including tabu search, Lagrangian
relaxation, and column generation [1-4]. Some works have also investigated additional
issues, such as multiple periods [5], queueing delay [6], and priority classes [7], to name a
few.

In this paper, we address demand uncertainty in the classical BWP. The amount of
bandwidth used for each call is typically not fixed and rather changes over time. Moreover,
it is difficult or even impossible to estimate bandwidth reliably in large networks. In
this case, the solution of deterministic problem that uses mean demand may cause in a
deterioration in the quality of service, and therefore a network manager tends to estimate
the demand conservatively to safely guarantee the feasibility of selected calls. Then,
it obviously leads to a wastage of network capacities. To efficiently handle this data
uncertainty, we use a robust optimization technique in the sense of Bertsimas and Sim
[8].

Robust optimization is a methodology for handling optimization problem with uncertain
data, which aims at finding solutions that are feasible for all realization of data in given
uncertainty set and optimize against the worst-case instance. At a first glance, robust
optimization seems a very conservative approach. However, it can provide a parameter
that enables us to control the level of conservatism of the solution. Moreover, the model
proposed by Bertsimas and Sim [8] has the advantage of preserving the linearity of the
original problem, and therefore the robust problem of an integer program is also an integer
program. However, for large-scale integer program, its robust problem may not be solved
efficiently using MIP solvers. Thus, we develop an efficient algorithm based on Dantzig-
Wolfe reformulation to solve the robust bandwidth packing problem (RBWP).
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The paper is structured as follows. Section 2 describes the problem formulations for the
RBWP and our Dantzig-Wolfe reformulation is given in Section 3. The detailed branch-
and-price algorithm is given in Section 4. Computational test results are reported in
Section 5. Finally, the concluding remarks are given in Section 6.

2. Problem Formulation. In this section, we present an integer programming formu-
lation for the RBWP. Let G = (V,E) be an undirected graph where V is the set of nodes
and E is the set of edges. Let A(v) be the set of adjacent nodes of node v ∈ V . Let K
denote the set of calls, i.e., the set of origin-destination pairs with demand requirement.
The origin of call k ∈ K is sk and its destination is tk. Let be denote the capacity of
e ∈ E and wk denote the revenue of call k ∈ K. We assume the demand of a call k is
distributed with mean r̄k > 0 and maximum deviation r̂k > 0. In other words, the actual
demand can take values in [r̄k − r̂k, r̄k + r̂k] for every call k ∈ K. Given this demand
uncertainty set, the RBWP is to find a maximum revenue selection of calls while routings
of the calls observe the capacity of the links if at most Γ calls are allowed to deviate from
their mean value simultaneously. We can control the level of conservatism of the solution
by controlling parameter Γ. Note that when Γ = 0, the robust problem is equivalent to
the deterministic BWP. Likewise, if Γ = |K|, we find the solution against the worst-case
demand realization. Therefore, by varying Γ ∈ [0, |K|], we have the flexibility of adjust-
ing the robustness against the level of conservatism of the solution. Before presenting the
RBWP formulation, we give the following deterministic BWP, where the nominal demand
equals its mean value.

(RBWP) max
∑
k∈K

wkyk (1)

s.t.
∑

j∈A(v)

xk
ji −

∑
j∈A(v)

xk
ij =

 −yk, if i = sk;
yk, if i = tk;
0, otherwise

∀k ∈ K, i ∈ V, (2)

xk
ij + xk

ji ≤ xk
e , ∀k ∈ K, e = {i, j} ∈ E, (3)∑

k∈K

r̄kx
k
e + max

{S⊆K,|S|≤Γ}

∑
k∈S

r̂kx
k
e ≤ be, ∀e ∈ E, (4)

xk
ij ∈ {0, 1}, yk ∈ {0, 1}, (5)

where yk takes value 1 if call k is selected, xk
ij takes value 1 if call k is routed through a

path that uses arc ij. Constraints (2) contain the flow conservation equations, and arc
variable xk

ij and edge variable xk
e are linked together in constraints (3). Constraints (4)

ensure that the total demand routed through each edge cannot exceed the edge capacity,
where an inner maximization problem determines the maximum total deviation from the
mean demand values when at most Γ calls can be deviated simultaneously. Note that
this problem is a nonlinear program; however, by taking dual of the inner maximization
problem we can reformulate it as a following problem.

(PBS) max (1)

s.t. (2), (3), (5),∑
k∈K

r̄kx
k
e + zeΓ +

∑
k∈K

pk
e ≤ be, ∀e ∈ E,

ze + pk
e ≥ r̂kx

k
e , ∀e ∈ E, ∀k ∈ K,

pk
e ≥ 0, ∀e ∈ E, ∀k ∈ K,

ze ≥ 0, ∀e ∈ E.
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For a detailed explanation of this reformulation, refer to [8]. This reformulation enables
us to solve the RBWP using MIP solvers since it preserves the linearity of the deter-
ministic problem (Γ = 0). Note that, compared to the deterministic problem, we need
|E| + |E||K| additional variables and |E||K| additional constraints for the robust prob-
lem. Accordingly, if the given network size and the number of calls are large, solving
this reformulation directly using the solvers becomes difficult. Therefore, we apply the
Dantzig-Wolfe decomposition and present the branch-and-price algorithm to find optimal
solution of the RBWP.

3. Dantzig-Wolfe Reformulation. To develop the Danzig-Wolfe reformulation, we
first define a call pattern, which represents the set of possible calls that can traverse
the same edge simultaneously [4,6]. A call pattern g for edge e is mathematically repre-
sented by a set K(g), such that

∑
k∈K(g) r̄k ≤ be. This definition of call pattern can

be extended to the context of robust bandwidth packing, such that a Γ-robust call
pattern for edge e is defined as a binary integer solution of the knapsack constraint,∑

k∈K r̄kxk + max{S⊆K,|S|≤Γ}
∑

k∈S r̂kxk ≤ be.
Let P (k) be the set of (sk, tk)-paths of call k ∈ K and P (k, e) be the set of paths in

P (k) that traverse edge e ∈ E for call k ∈ K. Let GΓ(e) denote the set of all Γ-robust
call patterns for edge e ∈ E and GΓ(e, k) denote the set of Γ-robust call patterns of e ∈ E
containing call k ∈ K. Then, the following Dantzig-Wolfe reformulation can be developed.

(PDW) max
∑
k∈K

∑
p∈P (k)

wky
p
k

s.t.
∑

p∈P (k)

yp
k ≤ 1, ∀k ∈ K, (6)

∑
g∈GΓ(e)

zg
e ≤ 1, ∀e ∈ E, (7)

∑
p∈P (k,e)

yp
k ≤

∑
g∈GΓ(e,k)

zg
e , ∀e ∈ E, k ∈ K, (8)

yp
k ∈ {0, 1}, zg

e ∈ {0, 1},
where yp

k takes value 1 if call k is selected and path p is assigned to call k, 0 otherwise, and
zg

e takes value 1 if call pattern g of edge e is selected, 0 otherwise. Constraints (6) mean
that a maximum of one path can be selected for each call. Constraints (7) ensure that at
most one Γ-robust call pattern can be assigned to each edge. Constraints (8) mean that a
path for call k can traverse edge e only if the call pattern containing call k is selected for
edge e. Since the formulation PDW has exponentially many variables, it is not possible
to solve it using MIP solvers. However, the LP relaxation of PDW is suitable for applying
column generation. The details of our algorithm including the column generation are
presented in the next section.

4. Solution Method. We now propose a branch-and-price approach to solve our re-
formulation PDW. It combines column generation with a branch-and-bound to obtain
integer solutions. For more details on the general methodology of the branch-and-price
algorithm, the reader is referred to [9]. Note also that our branch-and-price algorithm is
similar to that of Han et al. [6] proposed to solve a class of nonlinear BWP, except that
they solve nonlinear knapsack problems as a subproblem. For more details, see [6].

The idea of column generation for solving the LP relaxation is as follows. Let P̂ (k) be

the set of paths of call k generated so far and ĜΓ(e) be the set of Γ-robust call patterns of
edge e generated so far. The restricted master problem RMDW of PDW can be obtained
from PDW by replacing P (k) and GΓ(e) with P̂ (k) and ĜΓ(e), respectively. Let αk, βe
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and γk
e be dual variables associated with constraints (6), (7) and (8), respectively. We

can solve the LP relaxation of PDW by solving several RMDWs repeatedly. After finding
an optimal solution to RMDW, we check whether there are any columns not included in
the RMDW with a positive reduced cost. If such columns exist, they are added to the
RMDW, and the process is repeated; otherwise, the current optimal solution to RMDW

is also optimal to the LP relaxation of PDW.
Let

(
ᾱk, β̄e, γ̄

k
e

)
be the optimal dual values for the current RMDW. For each iteration,

we generate two types of columns, i.e., path and pattern. First, the reduced cost of path
p for call k is: wk − ᾱk −

∑
e∈E(p) γ̄k

e , where E(p) is the set of edges contained in the path
p. Then we solve the following subproblem to find paths with a positive reduced cost for
each call k ∈ K.

(SP1(k)) min
∑

e∈E(p)

γ̄k
e

s.t. p ∈ P (k).

For each call k ∈ K, SP1(k) is the shortest path problem from the source node of call
k to the sink node of call k over a network with positive edge costs; therefore, it can be
efficiently solved by Dijkstra’s algorithm. If the optimal cost is less than wk − ᾱk, a new
path for call k can be added to RMDW.

Next, the reduced cost of pattern g for edge e is: −β̄e +
∑

k∈K(g) γ̄k
e . Here, K(g) is the

set of calls contained in pattern g. We have to solve the following second subproblem to
find call patterns with a positive reduced cost for each edge e ∈ E.

(SP2(e)) max
∑
k∈K

γ̄k
e xk

s.t.
∑
k∈K

r̄kxk + max
{S⊆K,|S|≤Γ}

∑
k∈S

r̂kxk ≤ b,

xk ∈ {0, 1}, k ∈ N.

For each edge e ∈ E, SP2(e) is a robust knapsack problem, which is NP-hard since the
ordinary binary knapsack problem is a special case if Γ = 0. If the optimal cost is greater
than β̄e, a new call pattern for edge e can be added to RMDW. Note that when we apply
column generation, the demand uncertainty of the original problem is transferred to the
robust knapsack subproblem and we have to solve SP2(e) repeatedly, which seems to
be somewhat inefficient. However, the following proposition shows that it can be solved
by solving the ordinary knapsack problems several times. Since the ordinary knapsack
problem can be solved fast using well-known dynamic programming, it enables the robust
knapsack subproblem not to be a bottleneck of the overall algorithm.

Proposition 4.1. [10] The robust knapsack problem (SP2(e)) can be solved by solving at
most n − Γ + 1 ordinary knapsack problems.

5. Computational Results. The algorithm was coded in C# and all tests were per-
formed on an AMD X4 3GHz PC with 4GB RAM. ILOG CPLEX 12.1 was used for
solving mixed integer program PBS and master linear programs for the branch-and-price
algorithm. To solve knapsack problems, minknap algorithm of Pisinger [11] was used.

We performed several computational experiments on a 10-nodes network that were used
by Klopfenstein and Nace [12] in their work, except that our networks are undirected. We
present pictures of the network in Figure 1(a). Every edge e has the same capacity
be = 100. We randomly generated 40 calls, i.e., a source node and a sink node for each
call are determined randomly. The nominal demand value of each call is integer randomly
chosen in the range of [20, 40]. The demand is subject to uncertainty: for each call k, we
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(a) (b)

Figure 1. Test networks: (a) network 1; (b) network 2

set r̂k = αr̄k, where α ∈ (0, 1]. Finally, the revenue of each call is integer randomly chosen
in the range of [10, 20].

Table 1 shows the results. The meanings of the headings are summarized as follows:
#node: the number of generated nodes in the branch-and-bound tree.
#path: the total number of generated paths.
#ptn: the total number of generated patterns.
#lp: the total number of master LP solved.
root: the optimal value at the root node of the branch-and-bound tree.
opt: the integer optimal value (or the value of the best integer solution if no optimal

solution is found within time limit)
gap: (root – opt) × 100/(opt).
lp: the total time spent in solving the master LPs in seconds.
sp: the total time spent in solving the shortest path problem in seconds.
kp: the total time spent in solving the knapsack problem in seconds.
hr: the total time spent in primal heuristic in seconds.
total: the total time spent in solving the problem in seconds.

Table 1. Results on Network 1 with α = 30%

Γ algorithm #node #path #ptn root opt gap lp sp kp hr total
0 bnp 372 433 1371 335.8 325 3.34 8.7 0.5 0.6 1.0 12.2

cplex 437 342.5 325 5.40 4.2
1 bnp 9973 602 2179 310.6 292 6.39 275.5 4.7 36.7 9.2 345.1

cplex 140828 325.3 292 11.42 712.5
2 bnp 1686 491 1274 283.5 269 5.41 24.1 1.0 6.5 2.0 37.9

cplex 171101 312.8 268 16.30 5.14*
3 bnp 540 434 1024 274.4 262 4.77 5.9 0.5 2.5 0.6 11

cplex 268501 302.3 260 15.40 2.86*

A total solution time limit is fixed at 1800 seconds. When this limit is reached, the total
time in the table is expressed as * and the closed gap, which is the gap between the best
integer objective and the objective of the best node remaining, is indicated. Note that
Γ = 0 corresponds to the deterministic BWP, and the result for Γ ≥ 4 is not reported,
since Γ = 4 would already corresponds to the worst case. For each Γ value, the first row
reports the performance of the branch-and-price. Also, the second row reports the result
of CPLEX to solve PBS. We used the default CPLEX parameters.
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When Γ = 0, the deterministic problems were solved very fast by CPLEX. However, for
the robust problems with Γ > 0, our branch-and-price algorithm significantly outperforms
the CPLEX. We can observe that all the tested instances were solved in the given time
limit, while CPLEX was unable to find optimal solutions for the instances with Γ > 2.
The root gaps for PBS are very large compared to the Dantzig-Wolfe reformulations. The
results for solving time indicate that the robust knapsack problem was solved very fast.
This is because the robust knapsack problem is solved by customized dynamic program-
ming algorithm [11] independently of CPLEX. Thus, we can say that the robustness of
the original problem was well transformed to the column generation subproblems, which
gives us the significant computational benefit.

We next tested our algorithm for relatively bigger instance presented in Figure 1(b).
All data were generated in the same manner as the previous network, except that the
number of calls increased to 80.

Table 2 provides the results on Network 2. Due to the large size of the instance,
CPLEX was unable to solve even the deterministic problem and gives very poor solutions
for robust problem with Γ ≥ 2, such that closed gaps remain very large, up to 51% for
the instance with Γ = 3. However, the branch-and-price algorithm provides the solutions
close to being optimal for all Γ values, such that closed gaps are about 1%.

Table 2. Results on Network 2 with α = 30%

Γ algorithm #node #path #ptn root opt gap total
0 bnp 31828 1993 1410 1261.08 1260 0.00 0.08*

cplex 2027 1261.50 1260 0.00 0.08*
1 bnp 34459 2338 1550 1243.55 1229 0.01 1.13*

cplex 1163 1256.85 1228 0.02 2.23*
2 bnp 35106 2050 1249 1224.05 1206 0.01 1.41*

cplex 809 1252.00 896 0.04 39.64*
3 bnp 24451 2347 1572 1204.78 1190 0.01 1.18*

cplex 735 1246.89 824 0.05 51.17*

Next, to assess the robustness of the solution, we designed the simulation tests. Each
demand value is assumed to follow a normal distribution with mean of r̄k and a standard
deviation of r̂k/2. Note that the range [r̄k − 0.3r̄k, r̄k + 0.3r̄k] can be regarded as the
confidence intervals of approximately 95% for this normal distribution. Then we gener-
ated 1000 demand scenarios and checked the feasibility of the solutions for each demand
scenario. For the Network 1, the results are shown in Figure 2. The percentage of de-
mand scenarios that cannot be flowed feasibly is reported for the varying Γ values. It

Figure 2. Percentage of infeasible scenarios



ICIC EXPRESS LETTERS, VOL.11, NO.12, 2017 1763

shows that 97.9% of all demand scenarios failed to flow all demands for the deterministic
solution, while the robust solutions greatly improve the robustness with the increase of
the parameter Γ. We can also observe that it is sufficient to set Γ = 2 to obtain solution
which is robust with sufficiently high probability of feasibility.

6. Conclusion. In this paper, we present the Dantzig-Wolfe reformulation using Γ-
robust call pattern for the robust bandwidth packing problem under the framework of
[8] and propose the branch-and-price algorithm to solve it. In this approach, the demand
uncertainty in the original problem is transferred to the robust knapsack problem that
can be efficiently solved by applying the dynamic programming algorithm for ordinary
knapsack problem several times, and thus it enables us to obtain computational gain.
The computational results also demonstrate that our algorithm outperforms the CPLEX
which solves the direct reformulation of [8]. We hope that our work contributes to the
researches on the application of the general model of robust optimization to the large-scale
mixed integer programming problems. Future research may include the investigation of
probabilistic approach to the BWP under uncertainty. Note that probabilistic approach
usually requires solving stochastic programming problems that are known to be much
harder than robust optimization problems.
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