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Abstract. Support Vector Machine (SVM) is a widely used technique in automatic
document classification due to its ability to efficiently handle relatively high-dimensional
and large-scale datasets without decreasing classification accuracy. However, SVM still
suffers from some problems, e.g., the multi-class and kernel selection. In this paper,
we propose a new SVM ensemble approach, called Bagging-RS SVM, which is based on
two popular ensemble strategies, i.e., bagging and random subspace and aims at building
accurate and diverse classifiers. Four benchmark datasets are selected to demonstrate
the effectiveness and feasibility of the proposed methods. Experimental results reveal that
Bagging-RS SVM gets the best performance among the eight methods, i.e., SVM, Bagging
SVM, Random Subspace SVM, Boosting SVM, DT, NB and KNN. All these results
illustrate that Bagging-RS SVM can be used as an alternative technique for automatic
document classification.
Keywords: Automatic document classification, Ensemble learning, Bagging, Random
subspace, SVM

1. Introduction. Automatic document classification is the task of building software
tools to automatically assign some labels (from a set of pre-defined class labels) to a
document based on some selected features of that document [1,2]. In recent years, this has
become important due to the advent of large amounts of data in digital form. Especially
with the rapid development of the Web, a huge amount of textual information is now
accessible online. Moreover, much more textual documents are being created through Web
2.0 platforms, e.g., blogs, wikis and forums, where millions of Web users are now active
information providers. These further increase the importance of automatic document
classification [1-3].

Until the late 1980s, the most popular automatic document classification method was
based on the knowledge engineering approach [4]. However, the main problem of such an
approach is the knowledge acquisition bottle-neck; domain experts must be available and
heavily consulted in designing the classification rules. In recent years, machine learning
techniques have been applied to automatic document classification, including K-Nearest-
Neighbor (KNN), Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM)
and Artificial Neural Network (ANN). However, each of the above mentioned machine
learning techniques has its own unique properties and associated problems. The KNN is
easy to implement and shows its effectiveness in a variety of problem domains. A major
drawback of the KNN is that it is computationally intensive, especially when the size
of the training set grows large [5]. The NB is a relatively accurate classifier if trained
using a large data set while as in many other linear classifiers, capacity control and
generalization remain an issue [6]. The DT is simple to understand and interpret while
it does not work well when the number of distinguishing features between documents is
large [6]. The ANN is applicable to multivariate non-linear problems and does not need to
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assume an underlying data distribution [7]. However, the main disadvantage of ANN is its
“black box” nature and greater computational burden, especially to automatic document
classification which is a high-dimensional problem. As a relatively new machine learning
technique, SVM can be used as a discriminative document classifier and has shown better
performance than other techniques due to its ability to efficiently handle relatively high-
dimensional and large-scale data sets without decreasing classification accuracy. However,
applying SVM individually to automatic document classification has also some drawbacks,
e.g., multi-class and kernel selection problems.

Consequently, researchers have attempted to further enhance SVM with ensemble tech-
niques. The performance of SVM ensemble has been investigated empirically, and it
seemed to consistently give better results. In this research, we propose a new SVM en-
semble approach, called Bagging-RS SVM, for automatic document classification based
on two ensemble strategies, i.e., bagging and random subspace, to enhance the accuracy
of automatic document classification. Among the diverse ensemble techniques that are
available, bagging and random subspace are two more often used techniques and have been
found to be accurate, computationally feasible across various data domain. In addition,
it has been observed that an important prerequisite for ensemble techniques to reduce
the test error is that it generates a diversity of ensemble members. For bagging, the only
factor encouraging diversity is the proportion of different objects in the training samples.
Although the classifier techniques used in bagging are sensitive to small changes in data,
the bootstrap sampling appears to lead to ensembles of low diversity compared to other
ensemble methods, e.g., boosting. And at the same time, document representation using
vector space model in automatic document classification has high dimensional input space
and few irrelevant features. Thus, we can use random subspace strategy to select a subset
of relevant features as input. As a result, we introduce random subspace strategy into
Bagging SVM and get Bagging-RS SVM. As there are two different factors, i.e., bootstrap
selection of instances and random selection of relevant features, encouraging diversity in
Bagging-RS SVM, it would be advantageous to get more accuracy. For the testing and
illustration purposes, four benchmark datasets are used to verify the effectiveness of the
proposed method, i.e., Bagging-RS SVM. The experimental results reveal that Bagging-
RS SVM gets the best performance among the eight methods, i.e., SVM, Bagging SVM,
Random Subspace SVM (RS SVM), Boosting SVM, DT, NB and KNN. All these results
illustrate that Bagging-RS SVM can be used as an alternative technique for automatic
document classification.

The remainder of the paper is organized as follows. In Section 2, we propose a new
approach, i.e., Bagging-RS SVM, based on the bagging and the random subspace for
automatic document classification. In Section 3, we present the details of experiment
design. Section 4 reports the experimental results. Based on the observations and results
of these experiments, Section 5 draws conclusions and future research directions.

2. Bagging-RS SVM for Automatic Document Classification.

2.1. Bagging and random subspace. Breiman’s bagging, short for bootstrap aggre-
gating, is one of the earliest ensemble learning algorithms [8]. It is also one of the most
intuitive and simplest algorithms to implement, with a surprisingly good performance.
Diversity in bagging is obtained by using bootstrapped replicas of the training dataset:
different training data subsets are randomly drawn – with replacement – from the entire
training dataset. Each training data subset is used to train a different base learner of the
same type. The base learners’ combination strategy for bagging is majority vote. Simple
as it is, this strategy can reduce variance when combined with the base learner generation
strategies.
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The random subspace method is an ensemble construction technique proposed by Ho [9].
In the random subspace, the training dataset is also modified as in bagging. However, this
modification is performed in the feature space (rather than example space). The random
subspace may benefit from using both random subspaces for constructing the classifiers
and aggregating the classifiers. When the dataset has many redundant attributes, one
may obtain better classifiers in random subspaces than in the original feature space [9].
The combined decision of such classifiers may be superior to a single classifier constructed
on the original training dataset in the complete feature space.

2.2. Bagging-RS SVM for document classification. Great improvement in general-
ization performance has been observed from ensemble learning in a wide range of numerical
experiments and practical applications. On the generalization ability of ensemble learning
it is usually much stronger than that of a single learner, Dietterich gave three reasons by
viewing the nature of machine learning as searching a hypothesis space for the most accu-
rate hypothesis [10]. The first reason is that, the training data might not provide sufficient
information for choosing a single best learner. For example, there may be many learners
performing equally well on the training set. Thus, combining these learners may be a
better choice. The second reason is that, the search processes of the learning algorithms
might be imperfect. For example, even if there exists a unique best hypothesis, it might
be difficult to achieve since running the algorithms results in sub-optimal hypotheses.
Thus, ensembles can compensate for such imperfect search processes. The third reason
is that, the hypothesis space being searched might not contain the true target function,
while ensembles can give some good approximation. For example, it is well-known that
the classification boundaries of decision trees are linear segments parallel to coordinate
axes. If the target classification boundary is a smooth diagonal line, using a single decision
tree cannot lead to a good result but a good approximation can be achieved by combining
a set of decision trees. Although these intuitive explanations are reasonable, they lack
rigorous theoretical analyses.

In practice, to achieve a good ensemble, two necessary conditions should be satisfied:
accuracy and diversity. For the first condition, accuracy, we could simply mean that the
base learner should be more accurate than random guessing. In this study, we use SVM
as base learner which is satisfied with the above condition. For the second condition,
diversity, we mean that each base learner has its own knowledge about the problem and
has a different pattern of errors compared to other base learners. Focusing on diversity,
there are different methods for construction of diverse base learners. For example, just
as mentioned above, bagging perturbs the distribution of the training set by resampling.
And random subspace perturbs the feature space to get diversity. For bagging, however,
there is the only factor encouraging diversity. Although the base learner used in bagging
is sensitive to small changes in data, the bootstrap sampling appears to lead to ensembles
of low diversity compared to other ensemble methods, e.g., boosting. To enforce diversity,
a version of bagging called Random Forest was proposed by Breiman [11]. The ensemble
consists of decision trees built again on bootstrap samples. The difference lies in the
construction of the decision tree. The feature to split a node is selected as the best
feature among a set of M randomly chosen features, where M is a parameter of the
algorithm. This small alteration appeared to be a winning heuristic in that diversity was
introduced without much compromising the accuracy of the base learners.

Following this improvement, as document representation using vector space model in
automatic document classification has high dimensional input space and few irrelevant
features (Joachims, 1998; Leopold & Kindermann, 2002), we can select a subset of rel-
evant features as input for base learners in Bagging SVM. This strategy is also used in
random subspace which builds each base learner on a different subset of features randomly
selected from the original feature set. Thus, we introduce random subspace strategy into
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Bagging SVM and get Bagging-RS SVM. As there are two different ensemble strategies,
i.e., bootstrap selection of instances and random selection of relevant features, encourag-
ing diversity in Bagging-RS SVM, it would be advantageous to get more accuracy than
bagging and random subspace individually. The pseudo-code for the Bagging-RS SVM
algorithm is given in Figure 1.

Input: Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
Base learning algorithm SVM ;
Number of selected features rate k;
Number of learning rounds for Bagging TB;
Number of learning rounds for Random Subspace TR.

Process:
For t = 1, 2, . . . , TB:

Dt = Bootstrap(D); % Generate a bootstrap sample from D
For s = 1, 2, . . . , TR:

Ds
t = RS(Dt, k); % Random generate a subspace sample from Dt

hs = SV M(Ds
t ) % Train a decision tree hs from the sample

end.
HRS

t (x) = arg maxy∈Y

∑TR

s=1 1(y = hs(x)) % the value of 1(α) is 1 if α is true
end. % and 0 otherwise

Output: H(x) = arg maxy∈Y

∑TB

t=1 1
(
y = HRS

t (x)
)

% the value of 1(α) is 1 if α is true
% and 0 otherwise

Figure 1. The Bagging-RS SVM algorithm

3. Experimental Design. Four benchmark datasets are used to evaluate the perfor-
mance of our proposed method. These four text classification tasks are drawn from stan-
dard benchmarks, i.e., OHSUMED and TREC. The datasets range from 6 to 17 classes,
2000 to 31472 binary features. Dataset oshcal is from OHSUMED collection subset of
MEDLINE dataset, which contains 233445 documents indexed using 14321 unique cate-
gories. We took different subsets of categories to construct these datasets provided by Han
and Karypis [12]. Dataset fbis is from the Foreign Broadcast Information Service data
of TREC-5. Datasets la1 and la2 are from the Los Angeles Times data of TREC-5. For
all datasets, we used a stop-list to remove common words, and the words were stemmed
using Porter’s suffix-stripping algorithm.

The evaluation criteria of our experiments are adopted from the established standard
measures in the fields of text classification. Although precision and recall are two popular
performance measures for text classification, neither they make sense in isolation from
each other as it is well known from the IR practice that higher levels of precision may be
obtained at the price of recall, and vice versa. To combine precision and recall, we use
the F1 measure as performance evaluation criteria. Usually, F1 measure is computed from
two ways, i.e., macro-averaged and micro-averaged. Macro-averaged performance scores
are computed by first computing the scores for the per-category contingency tables and
then averaging these per-category scores to compute the global means. Micro-averaged
performance scores are computed by first creating a global contingency table whose cell
values are the sums of the corresponding cells in the per-category contingency tables, and
then use this global contingency table to compute the micro-averaged performance scores.

4. Experimental Results. In this study, we compared the performance of 8 methods,
including Bagging-RS SVM, SVM, Bagging SVM, RS SVM, Boosting SVM, DT, NB and
KNN (k = 10). For implementation of SVM, DT, NB and KNN, we chose SMO (WEKA’s
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own version of SVM) module, J48 (WEKA’s own version of C4.5) module, NaiveByes mod-
ule and IBk module in WEKA. And for implementation of ensemble learning, i.e., Bagging
SVM, RS SVM and Boosting SVM, we chose Bagging module, RandomSubSpace mod-
ule and ADBoostM1 module. For implementation of Bagging-RS SVM, we used WEKA
Package, i.e., WEKA.JAR and implement in Eclipse. Except when stated otherwise, all
the default parameters in WEKA were used. On each dataset, for each compared method,
we used Information Gain (IG) as feature selection criteria. For each dataset, we follow
Forman’s experimental procedure [13] and chose {10, 20, 50, 100, 200, 500, 1000, 2000} as
feature size. Moreover, six subspace rates for Bagging-RS SVM are tested, where the
value of k is set to 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. To minimize the influence of
the variability of the training set and also follow Forman’s experimental procedure [13],
five times 4-fold cross validation is performed on the four datasets.

Tables 1 and 2 show the best performance comparison in Micro F1 and Macro F1. In
addition, the experimental results on the other feature sizes and subspace rate will be
presented later in this subsection. Note that for the four datasets, Bagging-RS SVM all
gets best performances compared with other seven methods. For example, on the dataset
fbis, the Macro F1 of Bagging-RS SVM is 81.09%, which is approximately 24% higher
than that of DT, 22% higher than that of NB, and 26% higher than that of KNN. On the
dataset oshcal, the Micro F1 of Bagging-RS SVM is 78.45%, which is approximately 9%
higher than that of DT, 22% higher than that of NB, and 26% higher than that of KNN.

Table 1. The best Micro F1 of different methods on four datasets

Dataset
Bagging-RS

SVM
SVM

Bagging
SVM

RS SVM
Boosting

SVM
DT NB KNN

oshcal 0.7845 0.7729 0.7778 0.7689 0.7563 0.7197 0.6433 0.6220
fbis 0.8519 0.8455 0.8467 0.8408 0.8452 0.7411 0.7360 0.7487
la1 0.9033 0.8938 0.8985 0.8987 0.8938 0.7772 0.8509 0.7733
la2 0.9095 0.8969 0.9028 0.9062 0.8969 0.7878 0.8593 0.7934

Table 2. The best Macro F1 of different methods on four datasets

Dataset
Bagging-RS

SVM
SVM

Bagging
SVM

RS SVM
Boosting

SVM
DT NB KNN

oshcal 0.7742 0.7627 0.7679 0.7582 0.7453 0.7066 0.6292 0.6103
fbis 0.8109 0.8089 0.8084 0.7996 0.8086 0.6544 0.6666 0.6427
la1 0.8845 0.8759 0.8810 0.8816 0.8759 0.7480 0.8193 0.7452
la2 0.8932 0.8811 0.8872 0.8907 0.8811 0.7584 0.8262 0.7666

Subsequently, Figure 2 displays the Micro F1 and Macro F1 curve for SVM and other
four ensemble SVM classifiers on four datasets. Note that for Bagging-RS SVM, the
subspace rate k = 0.7. On all four datasets, the performance of Bagging-RS SVM exceeds
all the other four methods. When the number of selected features is small, the performance
of Bagging-RS SVM may be worse than Bagging SVM and RS SVM. However, with the
increasing of selected features, the performance of Bagging-RS is becoming better than
Bagging SVM and RS SVM. These results further prove that the combining two ensemble
strategies, i.e., bagging and random subspace, can enhance the accuracy of automatic
document classification. It is unexpected that Boosting SVM gets worse performance than
other methods. Note that with the increasing of features, the performance of Boosting
SVM comes near to that of the individual SVM except dataset oshcal.
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(a) oshal

(b) fbis

(c) la1

(d) la2

Figure 2. Performance curves of different methods at different selected features
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5. Conclusions and Future Directions. With the exponential growth of textual infor-
mation available from the Internet, there has been an emergent need to find and organize
relevant information in text collections. For this purpose, automatic document classifica-
tion becomes a significant tool to utilize text information efficiently and effectively. In this
paper, a new SVM ensemble approach, called Bagging-RS SVM, is proposed for automatic
document classification. This approach works through integration of two popular ensem-
ble strategies, i.e., bagging and random subspace. Bagging-RS SVM outperforms bagging
and random subspace in generating more diverse component SVM classifiers. The ex-
periments on four benchmark evaluation datasets showed that Bagging-RS SVM gets the
best performance among the eight methods, i.e., SVM, Bagging SVM, RS SVM, Boosting
SVM, DT, NB and KNN. Based on these results, we can conclude that Bagging-RS SVM
can be used as an alternative technique for automatic document classification.

Several future research directions also emerge according to this study. Firstly, large
datasets for experiments and applications should be collected to further valid the conclu-
sions of the study. Secondly, the reason why Boosting SVM gets worse performance in
our experiments is not clear. In the future research, the mechanism should be studied
and subsequently revised Boosting SVM can be investigated further. Thirdly, the ex-
perimental results have shown that combining different ensemble strategies can achieve
better performance. Thus, more extensive combination of ensemble strategies can be
investigated in the future research.
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