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Abstract. A novel theoretical analysis of transmission characteristics of waveguide sys-
tems by using transverse resonance technique (TRT) is presented. The purpose of this
study is to acquire a method which could simply analyze the propagation parameters of
the slotted waveguide which is loaded with discrete impedance. The mathematical model
is based on the equivalent transverse resonance circuit, in order to define the propagation
condition, the fast/slow modes and losses in the fundamental mode. The result shows that
the slotted waveguide will lose the fundamental mode if the loaded capacitive impedance
is higher than 77pF/m. The different phase constant pattern of slow mode causes the
fundamental mode to converge to the unusual direction and the loss increases rapidly.
This novel technique has the advantage of simplicity and compares well with results of
electromagnetic simulation and measurement.
Keywords: Transverse resonance technique, Substrate integrated waveguide, Fast mode,
Slow mode, Loss

1. Introduction. The transverse resonance technique (TRT) has been used to analyze
the communication system of the waveguide for many years. It can easily determine the
propagation constant by solving the transmission line equivalent circuit, which is based
on the cutoff situation of the waveguide.

As the development of the waveguide, this technique is also used to analyze substrate in-
tegrated waveguide (SIW) with embedding other components. Lots of the studies based on
the full-mode SIW integrated with periodic components are proposed [1] in antennas [2,3],
filters [4,5], transverse electromagnetic (TEM) waveguides [6], metamaterial structures [7],
miniaturized waveguides and divider [8,9], high quality attenuators [10], half-mode SIW
[11], etc. Besides, the mathematical research based on TRT designs a wideband antenna
which has an effective half wavelength resonance within a cavity partially loaded with
an anisotropic medium [12]. Because of the effective analysis on equivalent circuits, the
TRT technique becomes a simpler approach to simulate the characteristics of the guided-
wave structures under the resonance condition.

In this paper, a novel theoretical method and mathematics analysis have been demon-
strated to model the TE (Transverse Electric) mode transmission of a loaded impedance
waveguide. It transfers the complex electromagnetic situations to direct mathematical
solutions. Section 2 indicates how the loaded impedance affects the TE modes of slotted
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SIW under the transverse resonance condition. Section 3 analyzes the fast/slow modes
in the fundamental mode. The comparisons between inference and simulation results
are presented as well. Section 4 presents the theoretical calculations of loss in fast/slow
modes. Finally, Section 5 concludes the paper.

2. The Analysis of Loaded Impedance Condition. The slotted SIW has been chosen
in this research. There is a slot d along the top layer of the SIW, which can be loaded
with impedance Z easily. Figure 1(a) shows the cross section of the slotted SIW model.
The a and b dimension has been well designed and RT/duriod 5870 is chosen to be the
dielectric material, which has the dielectric constant εr = 2.33. Figure 1(b) shows its
equivalent transverse resonance circuit mode. Impedance Z occupies the slot d between
the long side L1 and short side L2, in which L1 + d + L2 = a.

Figure 1. (a) Cross section of the slotted SIW (unit: mm); (b) equivalent
transverse resonance circuit mode

The input impedance (Zin) of a terminated transmission line with the load end ZL

is: Zin = Z0
ZL+jZ0 tan kxL
Z0+jZL tan kxL

, Z0 is the impedance characteristics and L is length of the

transmission line. Here the wavevector in the waveguide is kx = ω
√

µε. While in the
slotted SIW, the load end is the short circuit and ZL = 0. Therefore, Zin = jZ0 tan kxL.
In Figure 1(b), the resonance condition need satisfy Zin1 = −Zin2 [13] at the dash line;
now in our circuit, the case becomes:

jZ0 tan kxL1 = −(Z + jZ0 tan kxL2) (1)

When considering TE mode problems using the transverse resonance technique the
characteristic impedance is given by Z0 = Ey/Hz [12] and the equivalent voltage (V )
and current (I) are set equal to the electric (Ey) and magnetic (Hz) fields respectively.
However, because the discrete loaded components will be embedded into the waveguide
along the slot, we need to ensure that the equivalent waveguide voltage and current value
(and therefore Z0) are compatible with the voltage and current presented to the embedded
impedance Z. If the electric field is independent of y then the voltage at the impedance
will be Eyb, where b is the height of the waveguide. Hence, above cut-off, we choose

Z0 = bV
I

= bωµ
kx

, ω is the working frequency and µ is the relative magnetic permeability of
the dielectric material.

We consider the loaded impedance Z as discrete capacitance C, which is the capacitance
per unit length. Thus, at the resonant point of slotted SIW while setting θ = kxL1,
R = L2/L1, X = −1/ω2µbL1C, Equation (1) can be written as:

tan θ + tan Rθ = −Xθ (2)

For a given frequency ω, Figure 2 shows the plot of Equation (2) with the first solution,
the x-axis is the defined θ and the y-axis can be considered as the multiple of C. The
variable L1 is 15mm and L2 is 5.5mm. As expected, there are a number of solutions to
Equation (2). Each solution is corresponding to the order of TE modes. In the graph,
we can see that the slope of the −Xθ line will become small if −X is small. The value
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Figure 2. Plot of Equation (2) with the first root

of −X is determined by C. It means if the capacitance we add on the slotted SIW is too
large, the fundamental mode will disappear.

At the fundamental mode, the value of the x-axis (θ) is quite small, and we can ap-
proximate tan θ as: tan θ ≈ θ. So the first cross point in the graph only occurs when
this condition is satisfied: θ(1 + R) < −Xθ. Substituting R and X, we get the condition
of C < 1

ω2µb(L1+L2)
, which means that the fundamental TE mode only occurs under a

limited capacitance range. In this case, the slotted SIW has no fundamental mode unless
the discrete capacitance C is in the range of 0∼77pF/m, and the working frequency is at
2GHz.

3. The Phase Dispersion Results of Two Modes. The loaded impedance leads to
two types of propagation which can be categorized as fast and slow modes, where fast and
slow are defined with respect to the velocity of propagation in the substrate material.

In fast mode propagation, the field varies sinusoidally across the waveguide cross section,
as the case in conventional waveguide. The phase constant β is related to kx, which is
β =

√
εrk2

0 − k2
x, and k0 is the wave number of free space.

The slow mode propagation is another class of solution that is unusual. In slow mode
propagation, the fields will vary as combinations of exponential functions. Under this
condition Equation (2) becomes: tan(−jθ′) + tan(−jRθ′) + jXθ′ = 0, where we let
θ′ = αxL1, αx is the attenuation constant of the transverse direction, and the slow mode
solution is governed. Thus, impedance Z must be capacitive with C > 1

ω2µb(L1+L2)
and

the phase constant is given by β =
√

εrk2
0 + α2

x. Therefore, the transition frequency point
ft between slow and fast is:

ft =
1

2π
√

µCb(L1 + L2)
(3)

Thus, in the fundamental mode, theoretically, the fast mode propagates below ft and
above frequency ft, the propagation will be in the slow mode region. The impedance Z
we used is purely capacitive with value of 60pF/m. The dispersion curves of each TE
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Figure 3. The dispersion curves and E-field variations at different fre-
quency points (solid line-theoretical results, dash line-HFSS results)

mode and field variations at different frequency points are shown in Figure 3 by using
theoretical analyses and HFSS (High Frequency Structure Simulator). The structure with
periodic boundary conditions is shown as well.

In the fundamental mode of both results, the fast mode propagates below the light line.
It is clear that the E-field keeps the half mode distribution, which is like the sinusoidally
function. Above the light line, the slow mode propagation occurs, and the electric fields
start to concentrate around the slot like the hyperbolic sine function. The higher order
modes compare very well in both methods. The fundamental TE mode, however, does not
compare very well. In the theoretical analysis, the affection only occurs by the impedance
Z between the slot as a capacitance. However, in HFSS, there are other unavoidable
effects to the circuit, such as the slot capacitance, and the vertical capacitances of the
waveguide. These will slightly change the actual capacitance contribution. That is one
reason why the curves in this mode have different slopes.

Another reason is that in the simulation environment, the electric field of slow mode
does vary along Y direction in the field distribution. However, in the theory of TRT, we
assume that the E-field has no variation with Y , even though, both solution curves in the
fundamental mode follow the same shape and demonstrate slow mode propagation.

Using variables given above to calculate the transition point between slow and fast
mode is: ft ≈ 3.2GHz, which approximately matches with both results. This result shows
that the existence of loaded capacitive impedance makes the fundamental TE mode only
propagate in a limited range (2.4GHz∼3.2GHz) and then turn to the slow mode. The
different phase constant pattern of slow mode causes the fundamental mode to converge
to the unusual direction.

4. Loss Analysis Results. The loss is mainly caused by the resistor of impedance
Z in the circuit, which affects the attenuation constant. Especially in the slow mode
propagation, the loss is much higher than that of fast mode.

We let the component Z include the series resistor r and reactance X. Therefore,
written as the impedance form, Z is complex and Z = r + jX.

Losses in fast mode
Here we set a function f(kx) = 1

kx
(tan kxL1 + tan kxL2). Substituting Z0 = bωµ/kx

into Equation (1), we get f(kx) = − z
jbωµ

= jZ ′ = j(r′ + jX ′), where Z ′ = z
bωµ

, r′ = r
bωµ

,

X ′ = X
bωµ

. Because loaded impedance Z is complex, kx must also be complex. Then we

replace kx with kx − jαx. Now, f(kx − jαx) = j(r′ + jX ′) = jr′ − X ′. If αx is small, we
can use the Taylor series to expand this function as: f(kx − jαx) ≈ f(kx) − jαxf

′(kx)
+ higher order terms, where the derivative value f ′(kx) = − 1

k2
x
(tan kxL1 + tan kxL2) +

1
kx

(L1 sec2 kxL1 + L2 sec2 kxL2). If we only take the first term as the approximate value of
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the kx function, we will get f(kx) − jαxf
′(kx) = jr′ − X ′. Hence, equating the real and

imaginary parts yields αx = − r′

f ′(kx)
. If we set X ′′ = X′

L1
, r′′ = r′

L1
, φ = L2

L1
, the αx can be

expressed as:

αx =
r′′kx

(X ′′ + sec2 kxL1 + φ sec2 kxL2)
(4)

The propagation constant can be expressed as γ = jβ(kx) when the loss is zero and

the phase constant is β(kx), where β(kx) =
√

εrk2
0 − k2

x =
√

εrk0

(
1 − k2

x

εrk2
0

) 1
2
. And its

derivative value is β′(kx) =
√

εrk0

2

(
−2kx

εrk2
0

)(
1 − k2

x

εrk2
0

)− 1
2

= − kx

β(kx)
. The phase constant

expression with the loss is β(kx − jαx) = β(kx) − jαxβ
′(kx) + higher order terms. It is

assumed that the higher order terms are not considered, and the phase expression with
the loss will be: β(kx − jαx) = β(kx) + jα. So the attenuation constant of fast mode will
be:

α =
αxkx

β(kx)
(5)

Losses in slow mode
For the slow mode case, a similar analysis yields kx = − r′′αx

(X′′+sec2 αxL1+φ sec2 αxL2)
and the

phase constant is β =
√

εrk2
0 + α2

x. The attenuation constant α of slow mode propagation
becomes:

α =
αxkx√

εrk2
0 + α2

x

(6)

Figure 4 shows the theoretical attenuation plots of Equations (5) and (6). The series
resistance is 0.01125Ω·m. The solid lines are the fast modes, and the dash line is the
slow mode. It is clear that the attenuation constant increased rapidly in slow mode range
above the transition frequency point. It causes a dip between the first and second modes.
At 3GHz, the fundamental mode has about 5dBs/m loss; the second mode has about
3dBs/m loss at 8GHz.

Figure 4. The theoretical attenuation constants (series resistance r = 0.01125Ω·m)
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5. Conclusions. In this paper, based on the transverse resonance technique (TRT), we
introduced a novel mathematics method to model the slotted substrate integrated waveg-
uide with loaded components. For capacitive loaded circuit, the fundamental TE mode
may disappear while the capacitance per unit is too large. Furthermore, the governing
equations and the transition point between two types of propagations – the fast and slow
modes in the loaded waveguide are discussed. Both theoretical and simulation results
match well. The different phase constant pattern causes the fundamental mode to con-
verge to the unusual direction and the loss increases significantly in the slow mode that
leads to a frequency dip during the transmission.

This novel method can define the properties of the signal propagation theoretically,
and give a promising technique for analyzing other communication systems. The next
research plan is to utilize this method to design a flexible guide-wave structure which is
loaded with adjustable impedances.
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