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Abstract. To improve the reliability of software, it is necessary to investigate how to
design suspiciousness computation metrics to increase suspiciousness fault ranking for
fault localization. In this paper, different forms and numbers of fractions based on failed
execution spectrum and successful non-execution spectrum are designed to balance the
influence of each decisive spectrum on the suspiciousness, and three new suspiciousness
metrics EF0NP4, EF03NP3 and EF034NP3 are proposed to compute suspiciousness of
each statement to be the fault. In addition, using the proposed conception of execution
trace self-information, weights are designed to weigh each fraction in the above metrics,
the influence of two decisive spectra on the suspiciousness is dynamically adjusted, and
then three weighted suspiciousness metrics EF0NP4W, EF03NP3W and EF034NP3W are
proposed correspondingly. Then, a suspiciousness metric-based statement ranking algo-
rithm is designed to apply our six proposed metrics to getting suspiciousness ranking of
statements to be the fault. Experiments on the Software-artifact Infrastructure Repository
show that compared with other metrics, our metrics (especially our weighted metrics) help
improve the fault ranking about 15.7% (16.3%) on average, and up to 21.6% (22.4%) in
specific case, which is largely independent of types of test suite. As a result, fewer state-
ments need to be examined until the fault is found and the efficiency of fault localization
is improved. Furthermore, the ineffectiveness of failed execution spectrum-based metrics
can be solved.
Keywords: Program spectra, Execution trace self-information, Suspiciousness metric,
Software fault localization

1. Introduction. Software testing and debugging techniques are utilized to improve the
software reliability, which is important for software development. Since the software test-
ing is of high expenditure, it is impossible to test software exhaustively with all test
cases. Therefore, a subset of test cases is selected to reduce the cost of software testing
[1, 2]. To further improve the effectiveness of software testing, test cases should be sched-
uled and prioritized [3].

The artificial factor in software system makes it necessary to solve the problem of iden-
tifying fault as soon as possible with limited resources. An approach is proposed in [4]
to identify the influential functions in complex software network for fault localization. To
obtain suspiciousness of statements to be the fault, suspiciousness metric-based fault lo-
calization methods are designed by using program spectra [5]. However, most statements
are executed in few of failed executions, and failed execution spectrum-based suspicious-
ness metrics of Wong1 [6], Kulczynski1 [5], Ochiai and Tarantula [7] cannot work when the
number of failed executions decreases to zero, which affects the stability of these metrics.
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In view of this case, other program spectra are also considered to design suspiciousness
metrics, such as Wong2 [6], Ample [7], Sokal and Hamann [5]. However, the fault cannot
be ranked well because it is unreasonable to claim that each decisive spectrum has the
same effect on the suspiciousness. An approach is proposed, which combines multiple
ranking metrics for effective fault localization [8]. However, each metric in the approach
is not improved at all.

Therefore, to increase the suspiciousness fault ranking and solve the ineffectiveness
of failed execution spectrum-based metric, three new suspiciousness metrics EF0NP4,
EF03NP3 and EF034NP3 are proposed by constructing different fractions on the basis of
failed execution spectrum and successful non-execution spectrum to balance the influence
of each decisive spectrum on the suspiciousness. In addition, to further improve the effec-
tiveness of suspiciousness metric for statement ranking, execution trace self-information
is proposed to obtain information quantity about each type of execution. On the ba-
sis of the above metrics, three weighted suspiciousness metrics EF0NP4W, EF03NP3W
and EF034NP3W are designed respectively by using the proposed execution trace self-
information to dynamically reflect different influences of each fraction on suspiciousness.
And a suspiciousness metric-based statement ranking algorithm is designed to apply our
six proposed suspiciousness metrics to obtaining suspiciousness ranking of statements to
be the fault. The fault ranking can be increased with different types of test suite and
fewer statements need to be examined until the fault is located.

The organization of this paper is as follows. Section 2 introduces the basic concepts. In
Section 3, three new suspiciousness metrics are proposed. In Section 4, based on execution
trace self-information, weighted suspiciousness metrics are designed. A suspiciousness
metric-based statement ranking algorithm is presented in Section 5. Section 6 discusses
the experiments on a typical software-artifact. Conclusions are given in the last section.

2. Preliminaries. In this section, concepts of execution trace spectra and program spec-
tra of program running are introduced.

Let the set of statements {S1, S2, . . . , SN} denote a program written in a programming
language. As a basic element of the program, a statement can be a simple statement or a
compound one. To locate a fault, a program should be executed with a test suite of test
cases {T1, T2, . . . , TM}, and the execution traces of each program running are collected.

Definition 2.1. Execution trace spectra. The execution trace spectra are extracted as a
matrix, with column denoting statement Si and row denoting test case Tj, and cell eji

indicating whether Si is executed or not with Tj. If Si is executed with Tj, eji is equal to
1; otherwise, its value is zero. The last column rj denotes the execution result, namely 1
stands for a failed execution and 0 for a successful execution.

Definition 2.2. Program spectra aef , aep, anf and anp. For each program spectrum, the
first subscript ‘e’ or ‘n’ indicates whether Si is executed or not, and the second subscript
‘p’ or ‘f ’ indicates whether the corresponding test case is a passed or failed one. Failed
execution spectrum aef is defined as the number of failed executions covering Si as follows.

aef =
M∑

j=1

{eji|eji = 1 ∧ rj = 1} (1)

Similarly, successful execution spectrum aep, failed non-execution spectrum anf and
successful non-execution spectrum anp are defined.

3. Suspiciousness Metrics Based on Failed Execution Spectrum and Success-
ful Non-Execution Spectrum. Compared with other statements, the fault statement
would be executed in more failed executions and fewer successful ones. Different aef -
based fractions and anp-based fractions are designed by using four program spectra to
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exert more influence of aef on suspiciousness. Thus, three new suspiciousness metrics
EF0NP4, EF03NP3 and EF034NP3 are proposed, based on the decisive factors of failed
execution spectrum and successful non-execution spectrum.

A new aef and anp-based suspiciousness metric EF0NP4 is proposed, which consists of
aef and one anp-based fraction. The numerator and denominator of the fraction are anp

and the sum of four spectra respectively. As inversely proportional factors in EF0NP4,
aep and anf are taken into account to include in the denominator. And aef and anp are
included in the denominator to further reduce the influence of anp on the suspiciousness.

EF0NP4 = aef +
anp

anp + aef + aep + anf

(2)

where ‘EF’ in EF0NP4 denotes aef -based expression, and ‘0’ indicates that there is no
aef -based fraction. ‘NP’ denotes anp-based expression, and ‘4’ indicates the number of
spectra in the denominator of anp-based fraction.

Proposition 3.1. When aef is nonzero, aef is the factor determining the suspiciousness
value. Otherwise, only anp-based fraction plays a role in the metric.

Proof: The denominator of anp-based fraction equals the number of test cases, that is
aep + anf + aef + anp = M . In addition, the numerator anp is considered as a component
of the denominator; thus, anp-based fraction is less than 1. When aef is nonzero, that is
to say, aef is at least 1, aef is larger than the value of anp-based fraction. As a result,
aef plays the decisive role in the computing suspiciousness. With the help of anp-based
fraction, the metric can work when aef decreases to zero, only anp-based fraction plays a
role in this case.

When the statement is covered by failed executions, the event gives much information
about the fault and increases the possibility of statement to be fault. To increase the
importance of aef , one aef -based fraction is added besides aef . And the denominator of
the anp-based fraction is reduced to adjust the influence of anp on suspiciousness. Based
on the motivation, aef and the aef -based fraction are considered as the influence of aef

on suspiciousness, one anp-based fraction is introduced to reflect the influence of anp on
the result, and a novel suspiciousness computation metric EF03NP3 is designed.

EF03NP3 = aef +
anp

aef + aep + anp

+
anp

anp + aep + anf

(3)

The inversely proportional factors in EF03NP3, aep and anf are included in the de-
nominator of aef -based fraction. Moreover, aef is also included to decrease the effect of
aef , so the sum of aef , aep and anf is considered as the denominator. Just as aef -based
fraction, the sum of anp, aep and anf is used as the denominator of anp-based fraction.
When aef becomes zero, the suspiciousness depends only on anp-based fraction; otherwise,
aef plays a decisive role in computing suspiciousness. On the basis of metric EF03NP3,
another aef -based fraction is added to further increase the importance of aef , and a new
suspiciousness metric EF034NP3 is proposed as follows.

EF034NP3 = aef +
aef

aef + aep + anf

+
aef

aef + anp + aep + anf

+
anp

anp + aep + anf

(4)

aef and two aef -based fractions are considered to improve the influence of aef , the decisive
factor of the suspiciousness. With the anp-based fraction, anp has a certain effect on the
suspiciousness result.

4. Weighted Suspiciousness Metrics Based on Execution Trace Self-Informa-
tion. To obtain information quantity about each type of execution, the conception of
execution trace self-information is proposed. On the basis of EF0NP4, EF03NP3 and
EF034NP3, weights are designed for each fraction by using execution trace self-information
in order to reflect different influences of each fraction on suspiciousness, and thus three
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weighted suspiciousness metrics EF0NP4W, EF03NP3W and EF034NP3W are proposed
respectively. On the basis of EF0NP4, a weighted suspiciousness metric EF0NP4W is
designed with execution trace self-information as follows

EF034NP3W = aef + ωnp ·
anp

anp + aef + aep + anf

(5)

where ωnp is the weight of the anp-based fraction.

ωnp =
hnp

hnp + hef + hep + hnf

(6)

The structure of ωnp is consistent with that of the corresponding anp-based fraction
which is weighed as a whole. ωnp can be obtained by using execution trace self-information
hef , hep, hnp and hnf , which are proposed to get the information quantity of each type
execution for one statement. Take failed execution trace self-information hef of Si as an
example, and hef is proposed as

hef = −P(ef (Si)) log(P(ef (Si))) (7)

wherein P(ef (Si)) is the probability of Si executed with failed test cases, and ef (Si) is the
event that Si emerges in failed executions. P(ef (Si)) can be obtained by using program
spectra, the number of failed test cases f and the number of passed test cases p.

P(ef (Si)) =
aef

f + p
(8)

Similarly, successful execution trace self-information hep, failed non-execution trace self-
information hnf and successful non-execution trace self-information hnp can be computed.
Since each parameter has the same sign, ωnp will be less than 1.

Just like EF0NP4W, a weighted suspiciousness metric EF03NP3W is proposed on the
basis of EF03NP3. hef , hep, and hnf are utilized for determining the weight of the aef -
based fraction, and the weight is similarly constructed for the anp-based fraction. The
influence of aef and anp on the suspiciousness is dynamically reflected.

EF03NP3W = aef +
hnp

hef + hep + hnp

· anp

aef + aep + anp

+
hnp

hnp + hep + hnf

· anp

anp + aep + anf

(9)

An attempt of changing importance of each fraction in EF034NP3 is made, three weights
are introduced based on execution trace self-information to weigh two aef -based fractions
and the anp-based fraction, and a weighted suspiciousness metric EF034NP3W is designed.

EF034NP3W = aef +
hef

hef + hep + hnf

· aef

aef + aep + anf

+
hef

hef + hnp + hep + hnf

· aef

aef + anp + aep + anf

+
hnp

hnp + hep + hnf

· anp

anp + aep + anf

(10)

As shown in the formula, the influence of aef and anp on the suspiciousness result is
further adjusted by weights based on execution trace self-information.

5. Suspiciousness Metric-Based Statement Ranking Algorithm for Fault Lo-
calization. A suspiciousness metric-based statement ranking algorithm is designed to
apply above proposed suspiciousness metrics to ranking statements for fault localization.
For one fault version of a given program, two main steps should be done to realize the sus-
piciousness metric-based statement ranking. First of all, execution traces are collected to
extract the execution trace spectra for a test suite. Then the suspiciousness of statements



ICIC EXPRESS LETTERS, VOL.11, NO.2, 2017 281

can be obtained by using our suspiciousness metrics which are obtained with program
spectra and execution trace self-information.

The suspiciousness metric-based statement ranking algorithm is presented as follows.

Algorithm 1: Suspiciousness metric-based statement ranking algorithm
Input : fault versions {Vk}, test suite {Ti}
Output : sequences {Sik}M and {Sim}L of each metric for each version {Vk}
1. For each fault version Vk

2. For each test case Tj

3. Run program with the test case
4. Collect execution trace
5. Compare output with the corresponding expected output, get rj

6. End For
7. End For
8. For each fault version Vk with the test suite
9. Extract execution trace spectra {eji}

10. End For
11. For each fault version Vk

12. For each statement Si

13. Compute program spectra aef , aep, anf and anp

14. Compute execution trace self-information hef , hep, hnf and hnp

15. For each metric
16. Compute the suspiciousness of Si by the metric
17. End For
18. End For
19. For each metric
20. Rank statements by using medium line strategy and output sequence {Sik}M

21. Rank statements by using last line strategy and output sequence {Sim}L

22. End For
23. End For

With our metrics, the statement ranking algorithm is used for fault localization of
multiple fault versions of the same program at one time. For each fault version, statements
are ranked in descending sequence with one metric. However, several statements may have
the same suspiciousness. The medium-line (ML) and last-line (LL) strategies [9] will be
used to solve this problem, where the average ranking position of the middle line is used
as the ranking of these statements in ML strategy and the last position is used as the
ranking of these statements in LL strategy. As a result, two statement sequences {Sik}M

and {Sim}L are obtained respectively for each metric. Using any one of sequences, top l
ranking statements should be examined until the fault is located.

6. Experiment. As the typical software-related artifact for fault localization techniques,
the Software-artifact Infrastructure Repository (SIR) [10] is used to conduct experiments
to respectively compare our proposed suspiciousness metrics with our weighted metrics,
and the proposed suspiciousness metrics with other metrics of Kulczynskil (KUL for
short), Sokal (SOK), Hamann (HAN) and Tarantula (TA) for statement ranking.

6.1. Experimental environment. The aircraft collision avoidance system program “t-
cas” in SIR is used. Since fault of some versions corresponds to multiple statements or
losing statements do not adapt to the experiment, 35 fault versions are chosen from the 41
versions. To verify the stable performance of our metrics for fault localization, test suites
of two types “bigrand” and “bigcov” are selected, and four suites of each type are used.
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Then the metric-based statement ranking algorithm is realized by Java programming
language and then run under Fedora Core system.

6.2. Experimental results. With the size 80, test suites of “bigcov” type are generated
to achieve branch coverage. Using four test suites of this type, the average suspicious-
ness ranking of the fault of each version under ML strategy and LL strategy is shown
respectively in Figure 1 and Figure 2.
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Figure 1. The average ranking of the fault based on “bigcov” under ML strategy
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Figure 2. The average ranking of the fault based on “bigcov” under LL strategy

As shown in Figure 1, compared with KUL, TA, SOK and HAN, our proposed metrics
can rank fault better under ML strategy. Our metrics improve the fault ranking about
14.7% on average over the other metrics, and up to 16.2% in specific case. The perfor-
mance of KUL and TA is not stable, because they are ineffective for versions 5, 8, 13, 15,
24 and so on when failed execution spectrum is zero. In contrast, our metrics can even
work well in this case, and gain an increase of 18.5% and 21.9% for versions 5 and 8.

Under LL strategy, the last number is given as the ranking for juxtaposing statements
in the worst case. Although the ranking slightly decreases on the whole, our metrics even
perform better than other metrics for such as versions 4, 6, 12, 15 and 17. Taking version
4 as an example, in comparison with KUL and SOK, our metrics gain an average increase
of 23.1% and 8.7% respectively. Furthermore, the weighted metric of EF0NP4W increases
the ranking 25.3% and 10.9% respectively. Test suite of “bigrand” is generated randomly,
which has the same size as that of “bigcov”. As shown in Figure 3 and Figure 4, the
average ranking of the fault under ML strategy and LL strategy respectively is obtained
on the basis of four test suites of this type.

As shown in Figure 3, compared with the performance with test suites of “bigcov”
under ML strategy, the performance with “bigrand” suites is reduced. Using EF0NP4,
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Figure 3. The average ranking of the fault based on “bigrand” under ML strategy
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Figure 4. The average ranking of the fault based on “bigrand” under LL strategy

EF03NP3 and EF034NP3 makes fault rank better than other metrics KUL, TA, SOK
and HAN 20.9%, 21%, 11.1% and 11.1% respectively. In addition, our weighted metrics
EF0NP4W, EF03NP3W and EF034NP3W outperform corresponding non-weighted metrics
to some extent, about 1.47%, 1.65% and 1.18% respectively.

Take two of our metrics as example. Under LL strategy, in comparison with KUL, TA,
SOK and HAN, our metric of EF0NP4 gains an average increase of 17.2%, 17.3%, 11.1%
and 11.1% respectively, and our weighted metric of EF0NP4W gains an average increase
of 18.6%, 18.7%, 12.6% and 12.6% respectively.

In conclusion, with test suites of types “bigrand” and “bigcov” under the medium-
line and last-line strategies, our metrics help statement ranking algorithm increase fault
ranking about 15.7% on average in comparison with other metrics, and up to 21.6% in
specific case. Furthermore, our weighted metrics gain an increase of 16.3% on average,
and 22.4% for the best case. As a result, fewer statements need to be examined until fault
is located.

7. Conclusions. We propose three suspiciousness metrics EF0NP4, EF03NP3 and
EF034NP3 on the basis of aef and anp for computing the suspiciousness of statement
to be fault. In addition, to adjust the influence of each fraction in each metric on the
suspiciousness, we design weights for each fraction by using the proposed conception of
execution trace self-information, and then three weighted metrics EF0NP4W, EF03NP3W
and EF034NP3W are designed respectively. A suspiciousness metric-based statement rank-
ing algorithm is designed to apply our metrics to obtaining the suspiciousness ranking of
statements to be the fault. Experiments show that our metrics, especially our weighted
metrics rank fault well with test suites of different types. Furthermore, the ineffective-
ness of aef -based metrics is solved. Compared with the result of other metrics, fewer



284 W. JIANG, J. REN AND Y. HUANG

statements should be examined according to the ranking until the fault is located. The
efficiency of fault localization is improved.

Besides program spectra and execution trace self-information, the relationship of neigh-
bor running statements will be considered to compute suspiciousness of statements in the
future work in order to increase the suspiciousness ranking of fault.
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