
ICIC Express Letters ICIC International c⃝2017 ISSN 1881-803X
Volume 11, Number 2, February 2017 pp. 285–290

A NEW NOTATION TN FOR EXPRESSING CONCURRENCY
IN PROGRAM DESIGN

Hongyan Yao, Xuebo Sun and Han Bao

School of Software
University of Science and Technology LiaoNing

No. 185, Qianshan Middle Road, Lishan District, Anshan 114051, P. R. China
abroat@163.com

Received July 2016; accepted October 2016

Abstract. To leverage the computation power provided by multi-core computers, de-
velopers must resort to the concurrency programming. To the best of our knowledge,
concurrency program design as a goal is often explored at a level of abstraction which is
complicated and hard to understand. Few literature concerns about the intuitive concur-
rency design. Consequently, the concurrency program is usually thread-unsafe because
developers cannot get sufficient data info from design diagram to guide the next cod-
ing, even the activity diagram, a UML-based diagram, merely presents the control flow,
missing data info instead. This paper focuses on the intuitive concurrency design and
proposes a new task notation (TN) to specify the task. A diagram that is composed of TNs
called TND provides a better way than activity diagram in modelling the concurrency. A
case study with TND employed indicates TND can effectively express data-collaboration
or data-racing; moreover, TND eases to build the intuitive mapping between TN and its
implementation.
Keywords: Task, Concurrency design, Data racing, Thread, Multi-core

1. Introduction. Multi-processor or multi-core computer has become a commodity.
Consequently, the trend for scalability of today’s general-purpose programs can no longer
be simply fulfilled by faster CPUs; rather, programs must now be designed to take advan-
tage of the inherent concurrency in the underlying computational model. In other words,
in order to leverage the power provided by the multi-processor machine within a single
application, developers must resort to multi-thread. However, writing correct and efficient
concurrent programs has remained a challenge. It is mainly because the non-determinism
caused by thread scheduling makes finding errors through testing much less likely.

For pushing forward the application of concurrency programming and for improving
the people’s interest of using multi-thread techniques, some prepared works have been
undergoing. For instance, [1] stressed the concurrency is a necessary manner to improve
the application’s performance; developers must be experienced in parallelizing object-
oriented desktop application before they are willing to use it. For guiding how to code
concurrent program, [2,3] presented two proposals separately. One suggested improving
the GOF patterns for effectively coding the concurrency program; the other summarized
some classic concurrent scenarios and then suggested which multi-thread design pattern
is appropriate for. For the concern of quality of concurrency programming, [4] proposed
an automatic verifier for concurrent object-oriented language (Java is supported only); [5]
presented some tactics and rules for quality guarantee in concurrency coding.

Literature above mentioned relatively contributes to the concurrency coding, not the
concurrency design. It has been known that the concurrency program in pure code will
be hard to understand, modify, or extend if there are no accompanied design diagrams.
So how to design the concurrency in diagrams is as important as improving concurrency
coding. However, to date, only a few articles paid more attention to that. For instance, [6]

285



286 H. YAO, X. SUN AND H. BAO

focused on analyzing the design diagrams for concluding which UML-based diagrams are
appropriate for representing the concurrency scenarios such as competitive or coordinated;
furthermore, [7,8] shared almost the same thought and proposed separately the revised
UML-based method for expressing concurrency requirements. Their proposals make the
sequence diagram (a kind of UML diagram) a little mess. For example, expanding the
sequence diagram to express the concurrency semantic [8] is inappropriate because that
will bring too much arrow notations that decreased the readability of the diagram. In
fact, Martin and Martin in their book [9] noted the sequence diagram should concisely
serve for communication, rather not to express the details. If the details are needed to be
expressed, use code.

Based on above concurrency coding and design introduction, we believe that concur-
rency design should be resolved prior to developer’s adopting concurrency coding pattern;
moreover, the concurrency design should concisely express the concurrency requirements
without trivial details.

In this paper we propose an intuitive concurrency design notation called TN (Task
Node), which can intuitively express a task, its needed shared data, and its collaboration
with the other tasks. A diagram that is composed of TNs called TND (Task Node
Diagram) is capable of providing sufficient data and relation info for the coder to practice
his concurrency pattern. The TN in this paper is different from the ‘Task Notation’
mentioned in [10]; ours focuses on expressing the concurrent data in program model, while
theirs, by constructing a ConcurTaskTrees, is mainly used for organizing user interfaces.
Furthermore, ConcurTaskTrees method does not stress the tasks concurrency.

Our proposal provides a more effective way than activity diagram (a kind of UML
diagram for expressing the control flow of related activities) in expressing the concurrency
scenario. The analysis for the activity diagram and its deficiencies please refer to Section
2.

The rest of the paper is organized as the following. Section 2 analyzes the deficiencies
of UML-based concurrency expression (activity diagram in particular); Section 3 proposes
the notation of TN and TND. Section 4 presents a case study with the use of our proposal.
Section 5 concludes the paper.

2. Analysis for the Deficiencies of Existing UML-Based Concurrency Expres-
sion. With respect to the UML-based concurrency expression, we stress three deficiencies.
1) From the existing UML-based concurrency expression we can merely get the control
flow, missing data info, and that will make the mapping from design diagram to the
matching code difficult. In UML-based manner there are two diagrams that may be used
for concurrency expression: activity diagram (AD) [11] and sequence diagram (SD) [12].
AD is coarse-grained while SD is fine-grained. The route from AD to coding is like this:
design AD at first and then refine some activities in SD; finally, coding with referring to
SD. Both AD and SD provide control flow but they all do not hold data info in terms of
concurrency semantics. Some [4] tried to adapt the SD to support concurrency descrip-
tion but apparently Martin and Martin [9] claim their opposite attribute, because putting
extra elements in SD (a lower-level diagram) to reflect the concurrency usually makes
the SD look from concise to mess (many “combined fragment” and invoking lines needed
to be appended; brings more confusions while communication). We approve his opinion
and furthermore we believe concurrency is just a technique for coding and it should be
embodied in the code file, rather not being designed in a diagram like SD. At present,
AD is an alternative that supports concurrency control-flow description but it is weak to
provide shared data info for supporting the relationship of activities collaboration; it just
specifies what activity steps are going to do, through the notation of “Fork Node” or “Join
Node”. This directly results in that the coder in facing of AD will be puzzled in “what
data I handle? One activity is restricted by the other one or not?” In short, AD provides



ICIC EXPRESS LETTERS, VOL.11, NO.2, 2017 287

no data info for guiding the following design or coding on how to handle the concurrency
feature: data racing and data collaboration. 2) The other deficiency stressed is this: it is
difficult to expand the concurrent activity in AD. For example, if you want to add an extra
concurrent activity under the notation of “Fork Node”, then that could bring a disaster to
the coder because the coder is not aware of whether the data used for this added activity
is needed to be synchronized or not; even worse, this new added activity may lead to
a deadlock occurring among all concurrent activities (a possible reason is that applying
racing-data is in disorder). 3) Another deficiency about AD concurrency expression is
that we cannot get from the “Fork Node” to know which activity involved in data-racing
and which activity serves as a data producer; that does rarely the benefits for coder to
choose an appropriate concurrency pattern such as mutual-lock or producer/consumer
pattern.

Based on the above analysis for UML-based concurrency expression we sum up as these:
a new notation is needed for concurrency expression which should present concurrent
activities as well as the data shared between them. From consulting the new notation the
coder should be consistently transform it from an activity into a code fragment. Next, our
proposal is presented for meeting these demands. The goal of our proposal, with respect
to the concurrency requirements, is to link up AD and coding.

3. The Proposal of Notation TN and TND. We named the TN as task notation
because TN is the concept for logic, not for implementation; thread is the concrete con-
ception for implementation. So the activities defined in AD are going to be mapped to
task instead of thread. TN is defined as Definition 3.1. Semantics for its marks are listed
in Table 1.

Definition 3.1. A task notation, TN, is defined as TN := {Id, Pre, Post, R, CF}.

Table 1. Semantic for each mark in TN

Mark Semantic
TN to specify a task notation
Id unique identifier for the task
Pre to indicate tasks prior to TN
Post to present tasks after TN
R predicates to claim the relations of TNs; RR if data-racing, RC if data-

collaboration
CF the corresponding code fragment that supports the TN

The notation of TN is straightforward. A TN is a set that is composed of elements
that must be specified when designing the concurrent scenario. We take a scenario as
an instance to demonstrate the usage of TN: in AD an activity, labeled A0, is forked
into four activities, labeled as A01, A02, A03 and A04; A02 and A03 are independent from
each other; A01 and A02 have data-racing in their executions; A03 and A04 have data-
collaboration when moving forward; finally all sub-activities are merged with A1. If this
scenario is diagramed with AD, see Figure 2(a), some semantics are lost such as data-
racing or data-collaboration between certain two activities; also Figure 2(a) does not
provide more data-aspect info that is important for coding realization. However, if Figure
2(a) is replaced by the TNs specification of Figure 1, semantics are all kept. In Figure 1,
each activity in Figure 2(a) is mapped to a TN under using our formal definition.

According to Figure 2(a), T0 has no Pre but it has four Post :< T01, T02, T03, T04 >. That
indicates T0 activates those tasks, which are going to run parallel with T0. T0 holds the
data-collaboration with T01 on the shared data dph0, expressed by RC(T0, T01, dph0) (at



288 H. YAO, X. SUN AND H. BAO

TN := {T0, < T01, T02, T03, T04 >,< RC(T0, T01, dph0) >, cph0}
TN := {T01, T0, T1, < RC(T0, T01, dph0), RR(T01, T02, dph12) >, cph01}
TN := {T02, T0, T1, < RR(T02, T01, dph12) >, cph02}
TN := {T03, T0, T1, < RR(T03, T04, dph34) >, cph03}
TN := {T04, T0, T1, < RC(T04, T1, dph1), RR(T04, T03, dph34) >, cph04}
TN := {T1, < T01, T02, T03, T04 >,< RC(T04, T1, dph1) >, cph1}

Figure 1. Formal definitions for a set of related TNs

(a) (b)

Figure 2. An AD and TND for modelling the concurrent tasks, respectively

the time dph0 denotes just a data placeholder, which will be replaced once the correspond-
ing contend for dph0 is settled down); in alike manner, cph0 is a code placeholder, too. It
denotes the code stream that supports T0 as well as RC(T0, T01, dph0). The other five TNs
are more or less the same in semantics. For instance, T01, which has a Pre T0 and a Post T1,
holds the data-collaboration of RC(T0, T01, dph0) and data-racing of RR(T01, T02, dph12);
at the same time cph01 denotes a supposed code fragment that supports T01. The last TN
T1 is stressed because it has no Post but has four Pre < T01, T02, T03, T04 >; that means
T1 has to wait < T01, T02, T03, T04 > are all finished before it goes on, for T1 must ensure
the shared dph1 between T1 and T04 is ready. cph1 is supposed to support T1.

It is evident that Figure 1 defines tasks without semantics lost. Even the categories of
data-collaboration or data-racing are specified, which provide sufficient valuable data info
for easing the following concurrency coding. Transforming Figure 1 into graphics of TND
will make the notation more expressive. See Figure 2(b), solid arrows represent the tasks
time sequence; dotted arrows indicate what data is shared in data-racing or what data is
shared in data-collaboration. If dotted line starts from the edge of a rectangle, like the
arrow that targets dph0 from T0, that means dph0 is the data produced by T0 and it will
be consumed only in cph01. This reflects a simple data-collaboration; if dph0 is shared
between T01 and T02, then the dotted line from dph0 to cph01 will be omitted, meaning the
data produced will be shared and mutually used. If tasks want to data-racing, dotted line
will start from CF. For example, T01 and T02 both want data-racing dph12, and then two
dotted arrows started from cph01 and cph02 are merged and target the same data: dph12.



ICIC EXPRESS LETTERS, VOL.11, NO.2, 2017 289

As the other graphical elements in Figure 2(b) have the similar semantics, unnecessary
detailed explanations are not given further.

4. A Case Study Using TN and TND to Model the Concurrency Scenario.
In this section a case study is presented as illustration for the usage of TN and TND.
The case scenario is supposed as this: at first, we prepare a data structure for handling;
secondly, three concurrent jobs are activated. One job adds five numbers randomly each
time into the data structure; the other job devotes to checking the data structure including
sorting numbers and deleting the specified numbers that meet the rule: “number mod 3
is 0”. Another job saves data to a file when the data structure is ready; finally, one job is
going to encrypt the file and email it.

With regard to the case description we do not draw the activity diagram as a start
because it contains merely the control flow for the jobs. We directly present the TND,
instead of TN’s formal specifications, to demonstrate TND can help trace the concurrency
implementation intuitively. A TND corresponding to this case is shown in Figure 3(a).
Roughly, each CF in TNs is no longer the code placeholder but the concrete CF, which
is extracted from Figure 3(b). Figure 3(b) presents the current implementations for T01,
T02, T03, and T1.

(a) (b)

Figure 3. TND together with tasks implementation to maintain the CF
mapping

At the time, if the implementation for T0 is not settled down, then cph0 still takes its
place. You can replace it once its corresponding content is finished.

Five tasks are designed in Figure 3(a): T0 is, on one hand, to prepare the data typed
in List<int>; on the other hand, to generate T01, T02 and T03. T01 and T02 are going
to use the List<int> data mutually. T01 performs its CF Putnumbers() to add numbers
into List<int> and T02 runs GoandCheck() to check and sort List<int>. Furthermore,
T02 will inform T03 when the data of “thelist” is ready. In alike manner, T03 runs with
the “thelist” and produces the data of “afile”. When T1 gets the knowledge that three
concurrent tasks are done, T1 will perform its CF, Encryandemail(), to do its job: encrypt
“afile” and email it.

The simulation becomes intuitively via consulting Figure 3(a), and the implementation
for each task, see Figure 3(b), is easier to be defined because the data for collaboration or
for racing has been specified explicitly ahead of time; moreover, the CF that handles the
shared data builds a direct map between task and its implementation. As a comparison,
we could assume that if there are no arrows and data info illustrated in Figure 3(a), just



290 H. YAO, X. SUN AND H. BAO

like Figure 2(a) we cannot intuitively get the following knowledge for the next detailed
design or coding: 1) take what data as a basis to build the relationships between tasks; 2)
tasks are in the relationship of coordination, data-racing, or both; 3) what data in each
task should be considered for concurrency; 4) in a coded task, there are code fragments
that have operations on some concurrent data.

Without the demonstration of Figure 3(a), we will miss much important concurrency
info, which will lead the coding hard to comprehend. So in short, TND suits for concur-
rency design as well as for the communication between designers and coders.

5. Conclusion. To design the concurrency scenario with activity diagram, on one hand,
it will lose the data info that should be specified for guiding the following coding phase;
on the other hand, the activity diagram is incapable of builtding an intuitively connec-
tion between concurrency design and its implementation. The paper proposes the TN
notation aiming to provide a better way that can get the essence of concurrency and can
express it in formal or in diagram TND. TN’s formal definition and its usage stresses the
difference between data-collaboration and data-racing; furthermore, TND demonstrates
how to transform formal definition into an intuitive figure presentation, and a case study
with TND employed illustrates its effectiveness: TND can express concurrency control
flow as well as shared data info, which cannot be expressed in AD. As TND explicitly
points out the mapping between tasks and their implementations, it is better than activity
diagram in expressing concurrency scenario. To develop a tool for auto-transforming the
TN formal definitions to TND is our future work.

REFERENCES

[1] N. Giacaman and O. Sinnen, Parallel task for parallelizing object-oriented desktop applications,
IEEE International Symposium on Parallel & Distributed Processing, Workshops and PhD Forum
(IPDPSW), Atlanta, GA, pp.1-8, 2010.

[2] S. L. Mooney, H. Rajan, S. M. Kautz and W. Rowcliffe, Almost free concurrency! (Using GOF
patterns), Proc. of the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion (OOPSLA’10), NY, USA, pp.249-250, 2010.

[3] J. Zheng and K. E. Harper, Concurrency design patterns, software quality attributes and their
tactics, Proc. of the 3rd International Workshop on Multicore Software Engineering (IWMSE ’10),
NY, USA, pp.40-47, 2010.

[4] J. Smans, B. Jacobs and F. Piessens, VeriCool: An automatic verifier for a concurrent object-oriented
language, Formal Methods for Open Object-Based Distributed Systems, Volume 5051 of the Series
Lecture Notes in Computer Science, pp.220-239, 2008.

[5] H. Gomaa, Designing concurrent, distributed, and real-time applications with UML, Proc. of the
28th International Conference on Software Engineering (ICSE’06), NY, USA, pp.1059-1060, 2006.

[6] W. M. Gentleman, Concurrency paradigms: Competitive, coordinated, and collaborative: Which
control mechanisms are appropriate? International Journal of Parallel Programming, vol.44, no.2,
pp.325-336, 2016.

[7] D. Kroening, Automated verification of concurrent software, Reachability Problems, Volume 8169 of
the series Lecture Notes in Computer Science, pp.19-20, 2013.

[8] B. Morandi, S. West, S. Nanz and H. Gomaa, Concurrent object-oriented development with behav-
ioral design patterns, Software Architecture, Volume 7957 of the series Lecture Notes in Computer
Science, pp.25-32, 2013.

[9] R. C. Martin and M. Martin, Agile Principles, Patterns, and Practices in C#, Prentice Hall, 2006.
[10] P. J. Molina, J. Belenguer and Ó. Pastor, Describing just-UI concepts using a task notation, Lecture

Notes in Computer Science, pp.218-230, 2003.
[11] F. Gu, X. Zhang, M. Chen, D. Große and R. Drechsler, Quantitative timing analysis of UML activity

diagrams using statistical model checking, Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, pp.780-785, 2016.

[12] S. Dahiya, R. K. Bhatia and D. Rattan, Regression test selection using class, sequence and activity
diagrams, IET Software, vol.10, no.3, pp.72-80, 2016.


