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Abstract. In this paper, reduced-order observer and command filter-based adaptive
fuzzy control is proposed for induction motors with parametric uncertainties and external
load disturbance. First, a reduced-order observer is used to estimate its angle speed. Next,
fuzzy logic systems are used to approximate unknown nonlinear functions. In addition,
command filtered backstepping control is designed to overcome the problem of “explosion
of complexity” inherent in the traditional backstepping design and the adaptive back-
stepping technique is employed to construct controllers. The adaptive fuzzy controllers
guarantee the tracking error can converge to a small neighborhood of the origin. Finally,
simulation results illustrate the effectiveness of the proposed approach.
Keywords: Induction motor, Fuzzy control, Reduced-order observer, Command filter

1. Introduction. In the past decades, induction motors (IMs) have been widely used
in industrial applications because of their simple and robust construction, high operating
efficiency and ruggedness. However, the drive system is highly nonlinear, strong coupling,
multivariable, and it is influenced by some uncertainties easily, such as parameter vari-
ations and external load disturbances. Hence, there are many challenges to control IMs
efficiently. In recent years, many control techniques have been developed to control IMs
and have made some tremendous progress, such as sliding mode control [1], Hamiltonian
control [2, 3], backstepping control [4] and other control methods [5, 6, 7, 8, 9]. The
backstepping control is considered to be one of the popular techniques for controlling
the nonlinear systems with the linear parametric uncertainty. However, when the virtual
control is differentiated repeatedly, the problem of “explosion of complexity” inherent in
the traditional backstepping approach arises. And the applications of the above control
methods for the IMs drive system require the information of systematic state variables
which are measured by the various sensors directly. For example, the motor speed is
needed so that the control system requires an actual speed signal provided by shaft sen-
sors for closing the speed loop. However, the application of shaft sensors will induce
several drawbacks such as high drive cost, large machine size, low reliability and noise
immunity as well as performance degradation owing to vibration or humidity.

To solve the above problems, reduced-order observer and command filter-based adaptive
fuzzy control is proposed for IMs drive systems in the paper. During the controller design,
fuzzy logic system is used to approximate the unknown nonlinear functions. By designing
reduced-order observer, the proposed method does not require measuring the value of the
speed signal, which will reduce hardware complexity and increase reliability for the IMs.
Also, command filtered backstepping technique is proposed to overcome the problem
of “explosion of complexity”. The proposed adaptive fuzzy controllers guarantee the
tracking error can converge to a small range of the origin and all the closed-loop signals
are bounded. Simulation results illustrate the effectiveness of the proposed approach.
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The rest of the paper is organized as follows. Section 2 describes the mathematical
model of IMs drive system. The reduced-order observer and command filtered fuzzy
adaptive backstepping controller is designed in Section 3 and Section 4. In Section 5, the
simulation results are given. Finally, some conclusions are presented in Section 6.

2. Mathematical Model of the IMs Drive System. Induction motor’s dynamic
mathematical model can be described in the well known (d-q) frame as follows:
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where σ = 1 − L2
m

LsLr
. Θ, ω, Lm, np, J , TL and ψd denote the rotor angle, the rotor

angular velocity, mutual inductance, pole pairs, inertia, load torque and rotor flux linkage,
respectively. id and iq stand for the d-q axis currents. ud and uq are the d-q axis voltages.
Rs and Ls mean the resistance, inductance of the stator. Rr and Lr denote the resistance,
inductance of the rotor. For simplicity, the following notations are introduced: x1 = Θ,

x2 = ω, x3 = iq, x4 = ψd, x5 = id, a1 = npLm

Lr
, b1 = −L2
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Lr
, d2 = LmRr
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r
. By using these notations, the dynamic model

of IMs driver system can be described by the following differential equations:

ẋ1 = x2,

ẋ2 =
a1

J
x3x4 − TL

J
,

ẋ3 = b1x3 + b2x2x4 − b3x2x5 − b4
x3x5

x4

+ b5uq,

ẋ4 = c1x4 + b4x5,

ẋ5 = b1x5 + d2x4 + b3x2x3 + b4
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3
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(1)

Lemma 2.1. Let f(x) be a continuous function defined on a compact set Ω. Then for any
scalar ε > 0, there exists a fuzzy logic system W TS(x) such that sup

x∈Ω

∣∣f(x) −W TS(x)
∣∣ ≤ ε,

where W = [W1, . . . ,WN ]T is the ideal constant weight vector, and S(x) = [p1(x), p2(x),

. . . , pN(x)]T/
∑N

i=1 pi(x) is the basis function vector.

Lemma 2.2. The command filter is defined as

φ̇1 = ωnφ2 (2)

φ̇2 = −2ζωnφ2 − ωn(φ1 − α1)

If the input signal α1 satisfies |α̇1| ≤ ρ1 and |α̈1| ≤ ρ2 for all t ≥ 0, where ρ1 and ρ2 are
positive constants and φ1(0) = α1(0), φ2(0) = 0, then for any µ > 0, there exist ωn > 0
and ζ ∈ (0, 1], such that |φ1 − α1| ≤ µ, and |φ̇1|, |φ̈1| and |

...
φ1| are bounded.
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3. Reduced-Order Observer Design for IMs. In this section, we will design fuzzy
reduced-oder observer to estimate the states of IMs. So the observer can be designed as:

˙̂x1 = x̂2 + c1(y − x̂1)

˙̂x2 = θ̂T
2 ϕ(z) + c2(y − x̂1) + x3

ŷ = x̂1

(3)

From Equation (1), we can obtain ẋ2 = f2(Z) + x3, where f2(Z) = a1

J
x3x4 − TL

J
,

Z = [ x̂1 x̂2 x3 x4 x5 ]. Choose universal approximation theorem to approximate
the nonlinear function f2(Z); according to the fuzzy logic system θ∗T2 ϕ(Z), we can also
obtain f2(Z) = θ∗T2 ϕ(Z) + ε2, where ε2 is the approximation error and satisfies ε2 ≤ |δ2| .
We can conclude that ẋ2 = θ∗T2 ϕ(Z) + ε2 + x3. Let e = x − x̂ be the observer error,

and then the observer error of system is ė = Ae + ε + ω̃, where ε =
[

0, ε2

]T
, A =[

−c1 1
−c2 0

]
, ω̃ =

[
0, θ̃T

2 ϕ(Z)
]T

. Let θ̃i = θ∗i − θ̂i (i = 1, 2). Supposing there exists a

matrix QT = Q > 0, there also exists a positive definite matrix P T = P > 0, which
satisfies ATP + PA = −Q. Choosing Lyapunov function candidate as V0 = eTPe, then
V̇o = ėTPe + eTP ė = −eQT e+2eTP (ε + ω̃). By using Young’s inequality, we can obtain

that 2eTPε ≤ ∥e∥2 + ∥P∥2 δ2
2, 2e

TPω̃ ≤ ∥e∥2 + ∥P∥2 θ̃T
2 θ̃2. Substituting it into V̇o, we can

conclude that
V̇o ≤ −eQT e+ 2 ∥e∥2 + ∥P∥2 δ2

2 + ∥P∥2 θ̃T
2 θ̃2 (4)

4. Adaptive Fuzzy Command Filtered Control. In this section, we will design a
controller for the IMs based on backstepping.

Step 1: For the reference signal x1d, define the tracking error variable as z1 = x1−x1d.
Consider Lyapunov function candidate as V1 = V0 + 1

2
z2
1 , and the time derivative of V1 is

computed by V̇1 = V̇0+z1(z2+(x1,c − α1)+α1+e2− ẋ1d). By using Young’s inequality, we

can get the following inequality: z1e2 ≤ 1
2
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2
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1 . Design the virtual control function

α1 = −1
2

+ ẋ1d − k1z1, and then we can obtain
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1

2
∥e∥2 − k1z

2
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Step 2: Define the tracking error variable as z2 = x̂2−x1,c. Consider Lyapunov function

candidate as V2 = V1 + 1
2
z2
2 + 1

2r1
θ̃T
2 θ̃2, where r1 > 0. Obviously, the time derivative of V2

is given by
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·
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(6)

By using Young’s inequality, we can get the following inequalitie: −z2θ̃
T
2 ϕ(Z) ≤ 1

2
z2
2 +

1
2
θ̃T
2 θ̃2. Design the virtual control functions α2 and the adaptive law as:

α2 = −k2z2 − 1
2
z2 − z1 + ẋ1,c − θ̃T

2 ϕ(Z),
·

θ̂2 = r1z2ϕ(Z) −m1θ̂2. Substituting it into (6), we can obtain:

V̇2 ≤ V̇0 +
1

2
∥e∥2 −

2∑
i=1

kiz
2
i + z1 (x1,c − α1) + z2(x2,c − α2) + z2z3 +

1

2
θ̃T
2 θ̃2 +

m1

r1
θ̃T
2 θ̂2 (7)

Step 3: At this step, we will construct the control law uq. Define the tracking error
variable as z3 = x3 − x2,c. Choose the Lyapunov candidate function as V3 = V2 + 1

2
z2
3 .

Then the time derivative of V3 is given by V̇3 ≤ V̇2 + z3 (f3 (Z) + b5uq − ẋ2,c), where
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f3 (Z) = b1x3 + b2x2x4 − b3x2x5 − b4
x3x5

x4
= W T

3 S3 (Z) + δ3 (Z). By using fuzzy logic

system, we can obtain z3f3 ≤ 1
2l23
z2
3 ∥W3∥2 ST

3 S3 + 1
2
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2
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2
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Substituting (8) into (7), we can obtain
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Step 4: Define z4 = x4 − x4d and choose the Lyapunov candidate function as V4 =
V3 + 1

2
z2
4 . Design the virtual control function α3 = 1

b4
(−k4z4 + ẋ4d − c1x4) and substitute

it into V̇4, and we can obtain
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Step 5: At this step, we will construct the control law ud. Define z5 = x5 − x3,c and
choose the Lyapunov candidate function as V5 = V4 + 1

2
z2
5 . Then the time derivative of

V5 is given by V̇5 = V̇4 + z5 (f5 + b5ud − ẋ3,c), where f5 (Z) = b1x5 + d2x4 + b3x2x3 +
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Choose the real control law ud as

ud =
1
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(
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z5ŴST
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Design W = max{||W3||2, ||W5||2}, W̃ = W − Ŵ . Then we choose the Lyapunov

function as V = V5 + 1
2r2
θ̃T θ̃, where r2 > 0. And the time derivative of V is given by
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Choose the adaptive law as
·

Ŵ = r2
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T
3 S3 + r2
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z2
5S

T
5 S5 −m2Ŵ , where mi for i = 1, 2

and li for i = 3, 5 are positive constants.
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Proof: By using |xi,c − αi| ≤ µ and Young’s inequalities, we can get

z1(x1,c − α1) ≤ z2
1 +

1

4
µ2, z2(x2,c − α1) ≤ z2

2 +
1

4
µ2, b4z4(x3,c − α3) ≤ z2

4 +
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4
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)
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θ̃T
2 θ̃2 +
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2
W̃ T W̃ +

1

2
W TW (15)

To address the stability analysis of closed-loop system, substituting the adaptive law
·

Ŵ , (14) and (15) into (13), we can obtain

V̇ ≤ r3 ∥e∥2 − (k1 − 1)z2
1 − (k2 − 1) z2
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2
3 − (k4 − 1) z2
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2
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(
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2r1
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2
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+
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(
2 + b24

)
≤ −aV + b (16)

where a = min
{

−2λmin(Q)−5
λmax(P )

, 2(k1−1), 2 (k2 − 1), 2k3, 2 (k4 − 1), 2k5, 2r1
(
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2

)
,

2r2
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2r2

}
, b = ∥P∥2 δ2

2 + m1

2r1
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2
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2
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2
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Then, (16) implies that

V (t) ≤
(
V (t0) −

b

a

)
e−a(t−t0) +

b

a
≤ V (t0) +

b

a
, ∀t ≥ t0 (17)

where zi (i = 1, . . . , 5), and W̃ belong to the compact set W̃ =
{(

zi, W̃
)
|V ≤ V (t0)+ b

a
,

∀t ≥ t0

}
. Namely, all the signals in the closed-loop system are bounded. Especially, from

(17) we can get limt→∞ z2
1 ≤ 2b

a
. By the definitions of a and b, we can set ri large enough

to get a smaller tracking error, with li and εi small enough after giving the the parameters
ki and mi.

5. Simulation Results. In order to illustrate the effectiveness of the proposed results,
the simulation is run for the induction motors with the parameters: J = 0.0586Kgm2,
Rs = 0.1Ω, Rr = 0.15Ω, Ls = Lr = 0.0699H, Lm = 0.068H, np = 1. The simula-
tion is carried out under the zero initial condition. The reference signals are taken as
x1d = 0.5 sin (t) + 0.5 sin (0.5t) and x4d = 1. The load parameter is chosen as TL ={

0.5, 0 ≤ t ≤ 5,
1.0, t ≥ 5.

The fuzzy membership functions are µF l
i

= exp [−(x+ l)2/2], l = N , l ∈ [−5, 5].
The control parameters are chosen as: k1 = 200, k2 = 80, k3 = 300, k4 = k5 = 100,
r1 = r2 = 0.1, m1 = m2 = 0.05, l3 = l5 = 0.5, ζ = 0.5, ωn = 5000.

Choose observer gain vector C = [10, 100] so that the matrix A is a strict Hurwitz
matrix. Specify positive definite matrix Q =diag{1, 1}, such that −2λmin(Q)−5 > 0, and

we can get P =

[
5.05 −0.5
−0.5 1.005

]
.

Figure 1 shows the reference signal x1 and x1d and Figure 2 shows the reference signal
x1 and x̂1. It can be observed from Figure 1 and Figure 2 that the system output can
track the given reference signals well. Figure 3 displays the reference signal x2 and x̂2

and Figure 4 shows the trajectories of tracking error e. Figure 5 and Figure 6 show the
trajectories of uq and ud. From the above simulation results, it is clearly shown that the
proposed control method can track the reference signal quite well even under parameter
uncertainties and load torque disturbance.
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Figure 1. x1 and x1d Figure 2. x1 and x̂1

Figure 3. x2 and x̂2 Figure 4. The tracking error

Figure 5. The control law uq Figure 6. The control law ud

6. Conclusion. Reduced-order observer and command filter-based adaptive fuzzy con-
trol for induction motors approach has been proposed in this paper. Reduced-order ob-
server is designed to estimate the angle speed of induction motors and command filter can
overcome the problem of “explosion of complexity”. The designed controllers guarantee
the position tracking error can converge to a small neighborhood of the origin. Simulation
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results testify its effectiveness in the IMs drive system. In the future work, we will focus
on the practical application of the proposed control algorithm.
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