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Abstract. The channel capacity of a wireless multiple-input multiple-output (MIMO)
communication link subject to i.i.d. Rayleigh fading is a critical performance benchmark
for the study of many variations of MIMO systems. Several closed-form approximations
exist to express the MIMO capacity as a function of the numbers of transmit/receive
antennas and the signal-to-noise ratio (SNR). However, these approximations cannot
decouple the impacts of antenna numbers and SNR on the MIMO capacity. This paper
first proposes a new approximation formula for MIMO channel capacity at the high SNR
regime. Moreover, several properties of MIMO channel capacity at the high SNR regime
are theoretically proved to validate our approximation. The merit of the proposed approx-
imation is that it provides structural insights into the independent impacts of antenna
numbers and SNR on the capacity. This merit is particularly useful for the theoretical
study of distributed MIMO and massive MIMO systems at the system level.
Keywords: Channel capacity, Massive MIMO, Distributed MIMO, Capacity approxi-
mation

1. Introduction. Massive MIMO technology is considered to be a key enabling tech-
nology for the next generation cellular systems and has attracted significant research
attention in recent years [1, 2]. A massive MIMO system uses advanced signal process-
ing to exploit the spatial dimension of wireless propagation channels and create multiple
parallel channels for high-speed data transmission. An ideal massive MIMO system re-
quires both ends of a communication link to be equipped with large numbers of antennas.
However, although it is possible to deploy a large antenna array at base stations (BSs),
it is unrealistic to install a large antenna array at mobile terminals due to size and cost
constraints. To this end, distribute multiple-input multiple-output (D-MIMO) technology
[3, 4] promises to achieve performance gains comparable to conventional MIMO systems
by allowing distributed wireless devices to collaborate with each other and form virtual
antenna arrays (VAAs). As a result, it is widely expected that massive distributed MIMO
transmission with large BS antenna array and random-size user-end antenna array will
become a common configuration in future cellular systems.

The performance of an MIMO transmission link is evaluated by its channel capacity.
Capacity study reveals the theoretical upper bound of MIMO systems and has been
a central theme of MIMO research. There is a wealth of literature regarding MIMO
channel capacity, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13], including studies with respect to
different MIMO transmission schemes (e.g., distributed or conventional), different channel
models (e.g., Rayleigh or Rician, correlated or uncorrelated, wideband or narrowband),
different channel information status (i.e., with or without channel information), different
definitions (e.g., ergodic capacity or outage capacity), different asymptotic assumptions
(e.g., high/low SNR, very large antenna size), and different levels (e.g., link level and
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system level). Although various MIMO capacity formulas have been derived for different
types of MIMO channel models, to our best knowledge, none of those formulae is able to
decouple the impacts of transmit antenna number, receive antenna numbers, and SNR on
the capacity, which means the capacity gains originated from increasing the antenna size
and increasing SNR cannot be separately quantified.

In this paper, we propose a new approximation formula for ergodic MIMO channel ca-
pacity under an i.i.d. Rayleigh channel model in the high SNR regime. Our formula gives
structural insights into the separate impacts of transmit/receive antenna numbers and
SNR on the MIMO capacity and provides necessary analytical tractability for the system
level capacity study of massive distributed MIMO systems. We prove several analytical
properties of our approximation. Numerical results show that our approximation is valid
for the high SNR regime for different settings of antenna number configurations.

The remainder of the paper is organized as follows. Section 2 proposes an approximation
of the MIMO channel capacity and evaluates the accuracy of the approximation. Section
3 proves several critical properties of the approximation. Finally, conclusions and future
work are drawn in Section 4.

2. Approximation of MIMO Channel Capacity. We focus on the most fundamental
form of MIMO channel, which is the i.i.d. uncorrelated Rayleigh fading MIMO channel
model. An accurate closed-form approximation of the MIMO capacity is given by [5]

C(t, r, χ) ≈ − t

ln(2)
[−(1 + β) ln(

√
χ) + q0(χ)r0(χ) + ln(r0(χ)) + β ln (q0(χ)/β)] (1)

where t and r are numbers of transmit and receive antennas, respectively, χ is the SNR,
and β = r/t. In (1), we have

q0(χ) =
−1 − u(χ) + v(χ)

2
√

χ
(2)

r0(χ) =
−1 + u(χ) + v(χ)

2
√

χ
(3)

where u(χ) = χ(1 − β) and v(χ) =
√

1 + 2χ(1 + β) + χ2(1 − β)2. This accurate approx-
imation has been derived by assuming a large number of t and r. However, its accuracy
has been deemed acceptable even for a small number of antennas [5]. Our numerical tests
show that the approximation error is lower than 1% given r ≥ 4.

We notice that in (1), the impacts of antenna numbers and SNR are not decoupled.
Motivated by the fact that an accurate and invertible formula exists to calculate the
MIMO capacity in the case of symmetrical antennas (i.e., t = r) [6], we can rewrite the
MIMO capacity as

C(t, r, χ) = min(t, r)G(χ) + ∆(t, r, χ) (4)

where the function G(x) is defined as [6]

G(x) = 2 log2

[
1 + x − 1

4
L(x) − 1

ln(2)4x
L(x)

]
(5)

with L(x) =
(√

4x + 1 − 1
)2

.
In the right hand side of (4), the first item is the capacity in the symmetrical antenna

case and the second item is the capacity difference. Function G(x) has a desirable property
as being analytically invertible, i.e.,

G−1(x) = −1

4
+

1

4

{
1 +

[
W0

(
−2−(x

2
+1)e−

1
2

)]−1
}2

(6)

where W0(x) denotes the real branch of the Lambert function. The Lambert W function
is the inverse function of f(w) = wew and satisfies W(z)eW(z) = z with complex values of
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w and z. Its real branch W0 maps inputs from interval
[
−e−1, +∞

)
to interval [−1, +∞)

and is a monotonically increasing function. The aim of this paper is to find a closed-form
approximation for the second item given by ∆(t, r, χ) = C(t, r, χ) − min(t, r)G(χ).

It is well known that in the high SNR regime, the MIMO capacity scales linearly with
the number of antenna pairs. This suggests that ∆(t, r, χ) should approach a constant
limit ∆∗(t, r) when SNR χ tends to infinity. In Figure 1, for a large SNR χ = 100 dB, we
compute ∆∗(t, r) numerically as a function of t with varying r. It is found that ∆∗(t, r)
is a bell-shape curve that exhibits four interesting properties:

• First, there is no capacity difference when t = 0 or t = r, i.e., ∆∗(t = 0, r) = 0 and
∆∗(t = r, r) = 0;

• Second, ∆∗(t = r/2, r) = r;
• Third, setting t = r/2 results in the maximum value of capacity difference;
• Fourth, the capacity difference as a function of t is a symmetric curve centered at

t = r/2.
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Figure 1. MIMO capacity difference ∆(t, r, χ) as a function of transmit
antenna number t (χ = 100 dB, simplified approximation based on Equation
(8))

These four properties inspire us to approximate ∆∗(t, r) with ∆apx(t, r), which is given
by the following power series

∆apx(t, r) = r −
∞∑

n=2

Kn
2n

rn−1
|t − r/2|n ,

N∑
n=1

Kn = 1 (7)

where Kn (n = 1, 2, . . . , N) are weights that can be optimized numerically. For N = 4 and
by means of numerical fitting, we are able to get convenient values of weights as K2 = 0.5,
K3 = 0.25, K4 = 0.25 for a simple approximation that yields satisfactory accuracy. This
simple approximation can be written as

∆apx(t, r) ≈ r − 2

r
(t − r/2)2 − 4

r2
|t − r/2|3 − 8

r3
(t − r/2)4 (t ≤ r) (8)

When t > r, we have ∆∗(t, r) = 0. The accuracy of the simple approximation is shown
in Figure 1. Numerical results show that the maximum normalized root square error
is smaller than 1.3% for any combinations of t and r. We note that the approxima-
tion accuracy can be improved by increasing N and assigning more accurate values for
weighting coefficients. For example, letting N = 6 and applying the optimum weights as
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K2 = 1.1966, K3 = −3.9060, K4 = 11.2102, K5 = −13.1721, and K6 = 5.6713, we are
able to improve the accuracy by one order at χ = 100 dB.

Figure 2 further illustrates the impacts of SNR, receiver antenna number r, and the
number of weights N on the approximation accuracy, which is evaluated by the root mean
square error (normalized by the range of values) given by

Ω =

√
1
r
Σr

t=1 (∆∗(t, r, χ) − ∆apx(t, r))2

maxt ∆∗(t, r, χ) − mint ∆∗(t, r, χ)
(9)

where we have maxt ∆∗(t, r, χ)−mint ∆∗(t, r, χ) = r for large values of χ. It is shown that
when the SNR χ > 43 dB, the approximation errors all fall below one percent. Moreover,
given r and N , there is an error floor which gets smaller with larger values of N and
smaller values of r.
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Figure 2. Normalized root mean square error as a function of channel
SNR χ with varying receive antenna numbers r and number of coefficients
N (full approximation based on Equation (7))

3. Proof of Some Properties Used in the Approximation. In this previous section,
we have proposed an approximation that is based on four hypothetical properties observed
from numerical results. Property 1 states that ∆∗(t = 0, r) = 0, ∆∗(t = r, r) = 0.
Property 2 states that ∆∗(t = r/2, r) = r. Property 3 states that the capacity difference
is maximized when t = r/2; Property 4 states that the capacity difference is a symmetrical
curve centered at t = r/2. This section will give a rigid analytical proof of these four
properties.

3.1. Proof of Property 1. When t = 0, we have

∆(0, r, χ) = C(0, r, χ) − C (0, r/2, χ) · 0

·
[
− (1 + β) ln (

√
χ) + q0 (χ) r0 (χ) + ln (r0 (χ)) + β ln

(
q0 (χ)

β

)]
− 0 ·

[
− (1 + β) ln (

√
χ) + q0 (χ) r0 (χ) + ln (r0 (χ)) + β ln

(
q0 (χ)

β

)]
= 0.

Moreover, when t = r, we have

∆(r, r, χ) = C(r, r, χ) − min(t, r)G(χ)

= min(t, r)G(χ) − min(t, r)G(χ) = 0.
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This ends the proof of Property 1.

3.2. Proof of Property 2. Under the condition of infinite SNR, i.e., χ → ∞, we have

lim
χ→∞

∆(r/2, r, χ) = lim
χ→∞

[C(r/2, r/2, χ) − C(r/2, r, χ)]

= lim
χ→∞

C(r/2, r, χ) − lim
χ→∞

C(r/2, r/2, χ) (10)

where
lim

χ→∞
C(r/2, r, χ)

= lim
χ→∞

− r

2 ln(2)

[
−3 ln(

√
χ) + q0(χ)r0(χ) + ln (r0(χ)) + 2 ln

(
q0(χ)

2

)] (11)

Substituting the various symbol definitions into (11) we get

= lim
χ→∞

− r

2 ln(2)

[
−3 ln(

√
χ) +

1 − 2v(χ) + v2(χ) − u2(χ)

4χ
+ ln

(
r2(χ)q0(χ)2

4

)]
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χ→∞

− r

2 ln(2)

[
1 − 2v(χ) + v2(χ) − u2(χ)

4χ
+ ln

(
r0(χ)q0(χ)

q0(χ)

4χ
3
2

)]
= lim

χ→∞
− r

2 ln(2)

[
1 − 2

√
1 + 6χ + χ2 + 1 + 6χ + χ2 − χ2

4χ
+ ln

(
r0(χ)q0(χ)

q0(χ)

4χ
3
2

)]

= lim
χ→∞

− r

2 ln(2)

[
1 + ln

(
r0(χ)q0(χ)

q0(χ)

4χ
3
2

)]
(12)

So far we have obtained the first term of the right-hand side of Equation (10). The second
term of the right hand side gives

lim
χ→∞

C(r/2, r/2, χ) = lim
χ→∞

− r

2 ln(2)

[
− 2 ln(

√
χ) +

1 − 2v(χ) + v2(χ) − u2(χ)

4χ

+ ln

(
1 − 2v(χ) + v2(χ) − u2(χ)

4χ

)]
= lim

χ→∞
− r

2 ln(2)

[
− 2 ln(

√
χ) +

1 − 2
√

1 + 4χ + 1 + 4χ

4χ

+ ln

(
1 − 2

√
1 + 4χ + 1 + 4χ

4χ

)]
= lim

χ→∞
− r

2 ln(2)
[−2 ln(

√
χ) + 1] (13)

Substituting (12) and (13) into (10) we get

lim
χ→∞

∆(t, r, χ) = lim
χ→∞

[C(r/2, r, χ) − C(r/2, r/2, χ)]

= lim
χ→∞

[
− r

2 ln(2)

(
ln

(
r0(χ)q0(χ)

q0(χ)

4χ
3
2

)
+ ln(χ)

)]
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[
− r

2 ln(2)

(
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(
r0(χ)q0(χ)
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4χ
1
2
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.

Further considering the fact that β = 2, we have

= lim
χ→∞

[
ln
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√
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2 ln(2)
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(
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3.3. Proof of Property 3. Now we will prove that when χ → ∞, ∆max(t, r, χ) achieves
the maximum value when t = r/2. We first express the capacity difference as a function
of β as follows

∆max(t, r, χ)

= C(t, r, χ) − min(t, r)G(χ)

= lim
χ→∞

− t

ln(2)

[
−(1 + β) ln(

√
χ) + q0(χ)r0(χ) + ln(r0(χ)) + β ln

(
q0(χ)

β

)]
− lim

χ→∞
C(r, r, χ)

= lim
χ→∞

− t

ln(2)

[
ln

(
1
√

χ

)1+β

+ 1 + ln(r0(χ)) + β ln

(
q0(χ)

β

)]
− lim

χ→∞
C(r, r, χ)

= lim
χ→∞

− t

ln(2)

[
ln

(
q0(χ)r0(χ)

(
q0(χ)
√

χ

)β−1
1

χ

(
1

β

)β
)

+ 1

]
− lim

χ→∞
C(r, r, χ)

= − r

β ln(2)

[
(β − 1) ln(β − 1) + ln

(
1

χ

)
− β ln(β) + 1

]
−
[
− r

β ln(2)

(
ln

(
1

χ

)
+ 1

)]
= − r

ln(2)

[
1

β
(β − 1) ln(β − 1) − ln(β)

]
(15)

The maximum value of (15) is a function of β. Taking the first-order derivative of the
equation 1

β
(β − 1) ln(β − 1) − ln(β) yields

1

β2
ln(β − 1) (16)

It follows that 1
β2 ln(β − 1) = 0 when β = 2, which means (15) achieves the maximum

value when t = r/2.

3.4. Proof of Property 4. When χ → ∞ we have

∆(t, r, χ) = − t

ln(2)
[(β − 1) ln(β − 1) − β ln(β)]

= − t

ln(2)

[
r − t

t
ln

(
r − t

t

)
− r

t
ln
(r

t

)]
= − t

ln(2)

[
ln

(
t

r − t

)
− r

t
ln

(
r

r − t

)]
(17)

∆ (r − t, r, χ) = − r − t

ln (2)

[(
r

r − t
− 1

)
ln

(
r

r − t
− 1

)
− r

r − t
ln

(
r

r − t

)]
= − r − t

ln (2)

[
t

r − t
ln

(
t

r − t

)
− r

r − t
ln

(
r

r − t

)]
= − 1

ln(2)

[
t ln

(
t

r − t

)
− r ln

(
r

r − t

)]
= − t

ln(2)

[
ln

(
t

r − t

)
− r

t
ln

(
r

r − t

)]
(18)

It can be observed that (17) and (18) are equal, i.e., ∆(t, r, χ) = ∆(r − t, r, χ). This
proves the symmetric property of ∆(t, r, χ).
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4. Conclusions. In this paper, we have proposed a new closed-form approximation for
MIMO channel capacity at the high SNR regime. Our approximation relies on four
properties of the MIMO channel capacity at the high SNR regime. These four properties
are theoretically proved and the accuracy of our approximation is validated by numerical
results. Our approximation can provide structural insights into the separate impacts of
transmit antenna number, receive antenna number, and SNR on the capacity, making
the approximation useful for the theoretical investigation of the system level performance
of large scale distributed massive MIMO systems. Future work can aim to find better
approximations in the medium and low SNR regimes, which dominate practical scenarios.
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