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Abstract. With multi-signal inputs, the controllability of graph for networked multi-
agent systems is analyzed in this paper. Meanwhile, a new system model is constructed.
Under this model, a new model is obtained which is similar to the single signal input
system. The controllability of graph for networked multi-agent systems is gained by using
the controllability rank criterion and PBH (Popov-Belevitch-Hautus) criterion under the
new model. It is more convenient and simpler to judge the controllability of the system by
using the new model. In addition, the controllability of graph for networked multi-agent
systems is improved on the basis of the existing conclusions.
Keywords: Controllability, Multi-signal input systems, System model, Rank criterion
and PBH criterion

1. Introduction. In recent years, academic circles have extensive research and attention
on multi-agent systems [1-6], and the multi-agent system has been widely used in many
fields, such as UAV formation control, robot formation control, even widely used in the
military. As we all know, the core problem of multi-agent systems is the controllability
problem, and the controllability is defined by applying an external control input to the
leader, so as to make the followers from any initial states to any desired states on the
basis of the multi-agent network. Because controllability reflects leaders’ ability to con-
trol followers from outside, studying the controllability of multi-agent systems has very
important significance [7-9].

In multi-agent systems, studies of controllability on the leader-follower topological graph
are mostly based on single input system model or a simpler model [6,10]. The establish-
ment of the model has an important influence on the controllability of systems. In the
established model, fully understanding the impact of the system on controllability could
provide good methods and help to solve the problem of the controllability of the multi-
agent systems undoubtedly. So it is a hot spot to study the influence of the controllability
of systems under the specific model.

As early as in [11], Tanner first studied the controllability through the link between the
nodes in the system. He proposed a necessary and sufficient condition to guarantee that
system is controllable with only one leader by using the neighbors’ information. And the
controllability theorem of undirected graph was obtained. This is of great help for the
follow-up study on controllability. In this paper, a more general multi-signal input model
is studied. Each node may receive a number of different signal inputs. This model is more
accurate in showing the generality of multi-agent systems. The main contribution of this
paper is to simplify the complex model of multi-signal input systems, and makes it easier
to judge whether the system is controllable, especially for a connected graph with a large
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number of nodes. The method of this paper can simplify the process of judging whether
the graph is controllable.

Some articles have made a lot of research about controllability based on Laplacian
matrix in recent years [12,13]. This paper also has investigated the relationship between
the controllability of systems and the Laplacian matrix. Especially under the multi-signal
input system model, further research about the relationship between the model and the
controllability of the systems is a necessity.

The rest of paper is organized as follows. Some preliminaries and the general model
of systems are reviewed in Section 2. The difference between the single signal and multi-
signal input system and model transformation are considered, respectively, in Sections 3
and 4. Our main results are presented in Section 5. Finally, conclusions are drawn in
Section 6.

2. Preliminaries. In multi-agent systems, graph of the nodes represents agents, and
the edges in the graph represent the communication link between agents. In this paper,
we consider a simple graph, that is, there is no weight without a closed ring or multiple
edges. Let G = (V , E) be a graph of order n with vertex set V = {1, 2, . . . , n} and edge
set E ⊆ [V ]2 := {{i, j} |i, j ∈ V }. Denote the set of input nodes in the n nodes graph is
S = {i1, i2, . . . , iq} for i1 < i2 < · · · < iq, the input node is called the leader node, and
the remaining follower node set is V\S. An edge exists between two neighboring nodes i
and j if (i, j) ∈ E . The degree di of the node i is given by the number of its neighbors,
and the degree matrix of G is the diagonal matrix D ∈ Rn×n whose ith diagonal entry is
di. The adjacency matrix of G is the matrix A ∈ Rn×n defined as aij = 1 if (i, j) ∈ E and
aij = 0 otherwise. The Laplacian matrix of G is given by L = D −A, and the Laplacian
matrix is positive and symmetric.

Given nodes i and j in the graph G, we define the distance dG(i, j) between i and j as
the length of a shortest path which connects nodes i and j. A graph G is connected if
there is a path between any pair of distinct nodes. We denote by ⟨L; B⟩ the smallest L-
invariant subspace containing B. It is well-known that ⟨L; B⟩ = span

{
LkB |k ∈ N0

}
,

and that if dim(⟨L; B⟩) = k + 1, then {B, LB, . . . , LkB} is a basis for ⟨L; B⟩. The pair
(L, B) is called controllable if dim(⟨L; B⟩) = n.

The focus of this paper is the analysis of the problem of controllability, where xi(t) ∈ R
represents the state of node i ∈ V at time t with interaction between nodes. An external
control vector U(t) at time t is applied to node i through the state matrix Bi ∈ Rq.
The dynamics of an individual node is given by ẋi(t) = −

∑
{i,j}∈E

(xi − xj) + BT
i U(t). In

addition, the dynamics at time t is observed by a vector y(t) ∈ Rp through a matrix
C ∈ Rp×n. The full system dynamics is{

ẋ = −L(G)x(t) + BU (t)
ẏ = Cx(t)

(1)

where B = [B1, B2, . . . , Bn]T ∈ Rn×q.

3. The Difference between the Single Signal and Multi-Signal Input System.
The difference between the single signal and multi-signal input system can be seen from
the following definition.

Definition 3.1. The set of input nodes in the n node graph is S = {i1, i2, . . . , iq} for

i1 < i2 < · · · < iq. Let U(t) = [u1(t), u2(t), . . . , uq(t)]
T be a vector of q controllers. System

(1) is a multi-signal input system if u1(t), u2(t), . . . , uq(t) are different, and system (1) is
a single signal input system if u1(t), u2(t), . . . , uq(t) are the same, that is u1(t) = u2(t) =
. . . = uq(t) = u(t), where the input matrix is a column vector b.
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Compared with the single signal input system, the multi-signal input system has two
kinds of complex situations. In the multi-signal input model, the system can be di-
vided into two kinds. One is that each leader only receives a signal input, the re-
ceived signal is not necessarily the same, and the corresponding matrix of the input
is B =

[
ei1 , ei2 , . . . , eiq

]
∈ Rn×q. The other one is that each node may receive multi-

ple signal input (This paper only considers the situation that has q controllers), and the
corresponding matrix of the input is

B =
[
b11ei1 + b21ei2 + · · · + bq1eiq , b12ei1 + b22ei2 + · · · + bq2eiq , . . . , b1qei1

+ b2qei2 + · · · + bqqeiq

]
,

where bij ∈ {0, 1}, 1 ≤ i, j ≤ q.

4. Model Transformation. For system (1), when each leader only receives a signal
input and the received signal is not necessarily the same, let U (t) and Mu(t) be the
following equation:

U (t) = [u1(t), u2(t), . . . , uq(t)]
T =

[
u′

1(t)u(t), u′
2(t)u(t), · · · , u′

q(t)u(t)
]T

=
[
u′

1(t), u
′
2(t), · · · , u′

q(t)
]T

u(t),

Mu(t) = BU (t) =
[
ei1u

′
1(t)u(t), ei2u

′
2(t)u(t), · · · , eiqu

′
q(t)u(t)

]
=

[
ei1u

′
1(t), ei2u

′
2(t), · · · , eiqu

′
q(t)

]
u(t).

Then system (1) can be converted into the following equation:{
ẋ = −L(G)x(t) + Mu(t)
ẏ = Cx(t)

(2)

where ui(t) = u′
i(t)u(t) with u′

i(t) being variable and they are not all zero and u(t) being
the cardinal number. By observing, each column of M has only a nonzero number, and
the locations of the nonzero number in each column are different, the matrix can be
converted into the following vector:

m = ei1u
′
1(t) + ei2u

′
2(t) + · · · + eiqu

′
q(t).

When each leader receives multiple signal inputs, let U(t) and Mu(t) be the following
equation:

U (t) = [u1(t), u2(t), . . . , uq(t)]
T =

[
u′

1(t), u
′
2(t), . . . , u

′
q(t)

]
[u(t), u(t), . . . , u(t)]T

=
[
u′

1(t), u
′
2(t), . . . , u

′
q(t)

]
u(t),

Mu(t) = BU (t)

=
[
b11ei1 + b21ei2 + · · · + bq1eiq , b12ei1 + b22ei2 + · · · + bq2eiq , . . . , b1qei1

+b2qei2 + · · · + bqqeiq

]
U(t)

=
[
(b11ei1 + b21ei2 + · · · + bq1eiq)u

′
1(t), . . . ,

(
b1qei1 + b2qei2 + · · ·

+bqqeiq

)
u′

q(t)
]
u(t).

Then system (1) can also be converted into system (2). And the matrix M can also be
converted into the following vector:

m =
(
b11ei1 + b21ei2 + · · · + bq1eiq

)
u′

1(t) +
(
b12ei1 + b22ei2 + · · · + bq2eiq

)
u′

2(t)

+ · · · +
(
b1qei1 + b2qei2 + · · · + bqqeiq

)
u′

q(t)

=
(
b11u

′
1(t) + b12u

′
2(t) + · · · + b1qu

′
q(t)

)
ei1 +

(
b21u

′
1(t) + b22u

′
2(t) + · · · + b2qu

′
q(t)

)
ei2

+ · · · +
(
bq1u

′
1(t) + bq2u

′
2(t) + · · · + bqqu

′
q(t)

)
eiq .
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In conclusion, we have a new model of the multi-signal input system:{
ẋ = −L(G)x(t) + mu(t)
ẏ = Cx(t)

(3)

5. Main Results. With the above model transformation, we give the following theorem.

Theorem 5.1. Suppose that L has distinct eigenvalues, the pair (−L(G),B) is control-
lable if and only if the pair (−L(G),m) is controllable.

Before proving Theorem 5.1, we make the following lemma.

Lemma 5.1. Suppose that L has distinct eigenvalues and let U be a matrix whose columns
are linear independent eigenvectors of L. Then, the dimension of ⟨L; B⟩ is equal to the
number of nonzero row vectors of W = U−1B. In particular, (L, B) is controllability if
and only if no row vector of W is zero row vector.

Proof: Since matrix L is symmetric, it can be expressed as L = UDU−1, where the
columns of U contain the orthogonal eigenvectors of L, and D is the diagonal matrix of
the eigenvalues of L. Vector ui is the eigenvector corresponding to eigenvalue λi. Denote
U = (u1,u2, . . . , un). Let W = U−1B = [w1, . . . , wn]T , where W ∈ Rn×q, wi is a
column vector, i ∈ {1, 2, · · · , n}. Then the controllability matrix of system (1) is

[λiI − L, B] =
[
λiI − UDU−1, B

]
= U

[
λiU

−1 − DU−1,U−1B
]

= U
[
(λiI − D)U−1,U−1B

]
Since U is a nonsingular matrix, it does not affect the rank of the matrix on the right,
and the right of the matrix can be expanded as follows


λi − λ1 0 · · · 0

0 λi − λ2
...

...
. . . 0

0 · · · 0 λi − λn




uT
1

uT
2

...

uT
n

 ,


wT

1

wT
2

...

wT
n


 .

When L has distinct eigenvalues, the above formula is full rank if and only if wi ̸= 0,
that is, the system is controllable. This completes the proof.

Lemma 5.2. Under the single signal input system, suppose that L has distinct eigenval-
ues. Let U be a matrix whose columns are linearly independent eigenvectors of L, and
then the dimension of ⟨L; b⟩ is equal to the number of nonzero components of v = U−1b.
In particular, (L, b) is controllable if and only if no component of v is zero.

Proof: Denote D as the diagonal matrix of the eigenvalues of L. Let v = U−1b =
[v1, . . . , vn]T. The controllability matrix of system (1) is[

b,UDU−1b,
(
UDU−1

)2
b, . . . ,

(
UDU−1

)n−1
b
]

=
[
b, UDU−1b, UD2U−1b, . . . , UDn−1U−1b

]
= U

[
UT b,DU−1b, . . . , Dn−1U−1b

]
= U

[
v,Dv, . . . , Dn−1v

]
= U


v1 λ1v1 · · · λn−1

1 v1

v2 λ2v2 λn−1
2 v2

...
...

...
vn λnvn · · · λn−1

n vn

 .

Clearly, the dimension of ⟨L; b⟩ is equal to the number of nonzero components of v =
U−1b. Moreover, the rank of (L, b) is n if and only if no component of v is zero. This
completes the proof.
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We now prove Theorem 5.1.
Proof: Let

U−1 =

 uT
1
...

uT
n

 =


u11 u12 · · · u1n

u21
. . . u2n

...
. . .

...
un1 · · · · · · unn

 and W = U−1B.

Then we have that
W = U−1B

=


b11u1i1 + b21u1i2 + · · · + bq1u1iq b12u1i1 + b22u1i2 + · · · + bq2u1iq · · · b1nu1i1 + · · · + bqnu1iq

b11u2i1 + b21u2i2 + · · · + bq1u2iq

..

.
..
.

..

.
..
.

..

.
b11uni1 + b21uni2 + · · · + bq1uniq · · · · · · b1nuni1 + · · · + bqnuniq

 .

Let v = U−1m. Then we have that
v = U−1m

=


(
b11u′

1(t) + · · · + b1quq(t)
)
u1i1 +

(
b21u′

1(t) + · · · + b2qu′
q(t)

)
u1i2 + · · · +

(
bq1u′

1(t) + · · · + bqqu′
q(t)

)
u1iq

.

..(
b11u′

1(t) + · · · + b1qu′
q(t)

)
uni1 +

(
b21u′

1(t) + · · · + b2qu′
q(t)

)
uni2 + · · · +

(
bq1u′

1(t) + · · · + bqqu′
q(t)

)
uniq



=


(
b11u1i1 + · · · + bq1u1iq

)
u′
1(t) +

(
b12u1i1 + · · · + bq2u1iq

)
u′
2(t) + · · · +

(
b1nu1i1 + · · · + bqnu1iq

)
u′

q(t)

.

..(
b11uni1 + · · · + bq1uniq

)
u′
1(t) +

(
b12uni1 + · · · + bq2uniq

)
u′
2(t) + · · · +

(
b1nuni1 + · · · + bqnuniq

)
u′

q(t)

 .

Compared with W = U−1B and v = U−1m, we can conclude that the combination of
the row vector elements in W is the corresponding elements in v. When no row vector of
W is zero row vector, no component of v is zero. Hence, when L has distinct eigenvalues,
the pair (−L(G),B) is controllable if and only if the pair (−L(G),m) is controllable.
This completes the proof.

6. Conclusions. In this paper, the problem of controllability was researched and an-
alyzed in detail in the multi-signal input system. In addition, a new system model is
constructed for a general multi-signal input system so that it is more convenient to judge
the controllability of the system in the new system model. Then this paper explained and
demonstrated the relationship between the controllability of graph for the multi-signal
input system and the Laplacian matrix. Further research is directed on the situation that
there are not only q controllers. Under the new model, the research methods and results
of controllability are provided, which can provide help and direction for the further study
on the controllability of complex graph.
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