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Abstract. Considering the purchasing behaviors of customers in the real practice, this
paper focuses on the vehicle scheduling problem in which the potential demand is con-
sidered. A mathematical model with soft time windows is developed to find the optimal
routes of vehicles by minimizing the total cost in the distribution. Considering the pro-
posed model is a typical NP-hard problem, we propose a novel hybrid algorithm CS-GA
based on the constraint satisfaction (CS) method and genetic algorithm (GA) to find the
optimal solutions, in which the initial solutions are generated by CS and then GA is used
to optimize and search in the solution space. Finally, the comparison results illustrate
the applicability and effectiveness of the proposed model and algorithm.
Keywords: Potential demand, Vehicle scheduling, Soft time windows, GA, CS

1. Introduction. The classical vehicle routing problem (CVRP) is first introduced by
Dantzig and Ramser in their study on the truck dispatching problem [1]. However, there
are no limits for the delivery time and the demand of customers is often fixed. Numer-
ous variants of CVRP have been proposed and extensively studied which are based on
the complications of real-world problems. Depending on different assumptions and con-
straints, they can be classified into VRP with time windows (VRPTW) [2,3], in which
customers have to be visited within a predefined time interval which can be described
by the earliest arrival time and the latest arrival; VRP with multiple depots (VRPMD)
[4]; VRP with stochastic demands (VRPSD) [5], which involves demands that are ran-
dom variables with known distributions; VRP with split delivery, where the demand of a
customer can be split and delivered by multiple vehicles [6]; the heterogeneous fleet VRP
with several vehicle types [7], etc. These works are more related to the real cases, but the
purchasing behaviors of customers may be affected by other customers, i.e., conformity
behavior, which could lead to the change of the demand. However, few papers of VRP
consider this scenario in the optimization. So, the following model will model VRP with
soft time windows and split delivery by considering the conformity behavior.

Due to the fact that the VRP is a typical NP-hard problem, in the literature many
heuristics-based studies are proposed for various VRPs. The work of Pang [8] applied the
improved route construction heuristics to solve VRPTM, and Wang and Wang [9] raised
the novel heuristics based on the traditional two-phase method and the results demon-
strated the effectiveness of the proposed heuristics. Most of the recent researches for VRPs
paid extensive attention to the development of meta-heuristics. This can be summarized
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as: genetic algorithms, ant colony optimization (ACO), simulated annealing (SA), vari-
able neighborhood search (VNS), local search algorithm, artificial bee colony (ABC), and
particle swarm optimization (PSO). For further details on VRP meta-heuristics, we refer
the reader to [10]. Among them, the most commonly used algorithm on VRPS is GA.
However, the generation of initial solutions is a key issue in GA. Usually, it is generated
randomly, but it may cost more time to be adjusted and modified. Thus, this paper
introduces the constraint satisfaction method used to the generation of initial solutions
[11]. Followed by it, GA is adopted to optimize the solutions. The research space can be
effectively controlled in the proposed algorithm which avoids the time consumption and
fails to the local optimum. The outline of the remaining paper is organized as follows: in
Section 2 the mathematical model is developed; Section 3 gives the designed algorithm
and a numerical example is shown in Section 4; Section 5 draws conclusions this paper.

2. The Mathematical Model of VRP Considering Potential Demand.

2.1. Problem description and assumptions. In this paper, we consider the vehicle
routing problem with a central depot “0”, and a set of customers {1, 2, . . . , N}, which is
defined by a directed graph G = (V, E). V = {0, 1, 2, . . ., N} is the node set including 0,
N customers and E is the set of arcs (i, j), i, j ∈ V . Arc (i, j) represents the possibility
to travel from i to j with an associated distance, duration or cost. The customers are
serviced by K homogeneous vehicles with a limited capacity Qmax and the same speed.
In the following, some assumptions are given for the modeling.

(1) The order of each customer is allowed to be split, which implies that the customer
can be visited more than one by different vehicles.

(2) The duration between the leaving time of a vehicle and the arrival time is defined
as a cycle. Since any vehicles can visit customers many times, the route of a vehicle may
consist of multiple cycles.

(3) For customers, two kinds of demand are considered, which are subject to the initial
demand di and the potential demand due to the conformity behavior d′

i. However, it is
assumed that the initial demand is given priority to be met.

(4) Soft time windows are imposed on the demand; [Ei, Li] for the initial demand of
customer i and [E ′

i, L
′
i] for the potential demand of customer I, in which Ei and E ′

i are the
earliest arrival time, Li and L′

i are the latest arrival time that customer i can be serviced
by a vehicle. The penalty cost will produce once the time windows are incurred.

2.2. Notations.

k Index of vehicles, k = 1, 2, . . ., K

Lk The total number of vehicle k’s cycle, l = 1, 2, . . ., Lk

p Penalty cost per time due to waiting for service

q Penalty cost per time due to delaying service, p < q

fi Servicing duration at customer i

tij Travel time from customer i to customer j with the travel cost per unit time cij

C Fixed cost per vehicle

tkijl The arrival time of vehicle k from customer i to customer j in the kth cycle

xk
ijl Decision variable; it is equal to 1 when vehicle k starts from customer i to

customer j in the lth cycle; otherwise, 0

bk
il Decision variable; the demand of customer i satisfied by vehicle k in the lth cycle.
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2.3. Mathematical model. The mathematical model is given as follows:

min z = CK +
K∑

k=1

Lk∑
l=1

N∑
i=0

N∑
j=0

xk
ijl · tij · cij +

K∑
k=1

Lk∑
l=1

N∑
i=1

N∑
j=1

[
p
(
Ej − tkijl

)
+q

(
tkijl − Lj

)
+ p

(
E ′

j − tkijl
)

+ q
(
tkijl − L′

j

) ]
(1)

s.t.
N∑

j=1

xk
0jl = 1, k = {1, 2, . . . , K}, l = {1, 2, . . . , Lk} (2)

N∑
j=1

xk
j0l = 1, k = {1, 2, . . . , K}, l = {1, 2, . . . , Lk} (3)

N∑
i=0(i̸=j)

xk
ijl = 1, k = {1, 2, . . . , K}, l = {1, 2, . . . , Lk}, j = {1, 2, . . . , N} (4)

N∑
i=0

xk
ihl −

N∑
j=0

xk
hjl = 0, k = {1, 2, . . . , K}, l = {1, 2, . . . , Lk} (5)

N∑
i=0

N∑
j=1

xk
ijl · bk

jl ≤ Qmax, k = {1, 2, . . . , K}, l = {1, 2, . . . , Lk} (6)

K∑
k=1

Lk∑
l=1

N∑
i=0

xk
ijl · bk

jl = dj + d′
j, j = {1, 2, . . . , N} (7)

tkijl + fj + tjh ≤
N∑

h∈V (h̸=j)

xk
jhl · tkihl, k = {1, 2, . . . , K}, l = {1, 2, . . . , Lk},

j = {1, 2, . . . , N} (8)

Objective function, Equation (1), is to minimize the total cost. Equations (2) and
(3) indicate that all vehicles start from the central depot and return to the central depot
through some customers, respectively. Each vehicle visits only one customer in each cycle,
as imposed in Equation (4). The sequence of a route “i → h → j” for vehicle k in the
lth cycle is imposed by Equation (5) and Equation (6) gives the constraint for the vehicle
capacity. The demand of customers is met after the distribution process, as shown in
Equation (7). The time constraint is controlled by Equation (8) to ensure the time of a
vehicle k in the lth cycle reaching to customer j must be not earlier than tkril + fi + tij.

3. Design of an Improved Algorithm CS-GA.

3.1. The framework of the CS-GA. In this section, we design a hybrid algorithm
CS-GA in which an initial population for the vehicle routing problem considering the
potential demand is created by the CS method, based on which the genetic algorithm is
used to search the optimal solution. The detailed steps are as follows.

Step 1: Initialize the model and algorithm parameters.
Step 2: Generate solutions. Using constraint propagation techniques generates the

feasible solution: check whether a variable conflicts to the constraint conditions. If there
is no conflict, an assign is carried out for the next variable; otherwise, remove conflict
until a feasible solution is obtained.

Step 3: Check that whether the number of feasible solutions meets the population size
N , if it is met, turn to GA for the optimization; otherwise, continue to generate feasible
solutions.

Step 4: Evaluate the fitness of each individual in the population.
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Step 5: (Find the optimal solution) Perform the genetic operators until the iteration
termination condition is met, and ouput the results.

3.2. Solution presentation. Integer representation is used in this paper. However,
since a route consists of multiple cycles, rather than delivery only once, we defined an
index ki where k and i are the indices of vehicle and node respectively. The generalizable
chromosome representation is then described in Figure 1.

3.3. Fitness evaluation. Using the objective function shown in Equation (1), the fitness
is defined as the reciprocal of z, i.e., F = M − z, in which M is infinite positive integer.
Thus, the fitness value of each individual from the initial population and its offspring can
be calculated to scale the performance of each individual.

3.4. Genetic operators. (1) Selection operator. The Roulette Wheel selection is used
to select fitter individuals. It implies that the probability of individuals with lower cost
to be selected for the next generation is higher. (2) Crossover operator. We propose a
novel crossover operator, as shown in Figure 2. (3) Mutation operator. 2-change mutation
technique is performed in this paper and the operator process is shown in Figure 3.

Figure 1. The chromosome structure

(a) Generation of offspring 1

(b) Generation of offspring 2

Figure 2. Crossover process

Figure 3. The mutation operator
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3.5. Algorithm parameters. The algorithm parameters can affect directly the perfor-
mance of the algorithm, which involve the crossover probability Pc, the mutation proba-
bility Pm, and the population size N . Thus, a self-adaptive adjust strategy is proposed
as shown in Equation (9).

Pc =

{
k1(f0 − f ′)/

(
f0 − f

)
f ′ ≥ f

k2 f ′ < f
, Pm =

{
k3(f0 − f)/

(
f0 − f

)
f ≥ f

k4 f < f
(9)

where k1, k2, k3, k4 are constants in the interval (0, 1], f ′ is the individual with the larger
fitness, f denotes the average fitness in the population, and f is used to represent the
fitness value of the mutation individual. Commonly, k1 and k3 are set to 0.75-0.95 and
0.005-0.01; the values of k2 and k4 are usually set to the relatively great values to obtain
the fitter individuals.

4. Numerical Example. The model parameters are shown in Table 1 and other prame-
ters are set to K = 6, Qmax = 65, C = 1000, p = 2.5, q = 4. The corresponding algorithm
parameters are N = 10, T = 500, k1 = 0.85, k2 = 0.90, k3 = 0.01, k4 = 0.95.

Based on the proposed algorithm CS-GA, the route results are obtained as shown in
Table 2 and the comparison results of the proposed CS-GA with GA are given in Table
3. From Table 1, the optimal route for each vehicle can be determined and the unloading
quantity at each customer is given. There are five experiments given in Table 3, in
which it is obvious that the results obtained by the proposed algorithm are better and

Table 1. The demand information

Customer i [Ei, Li] d′
i [E ′

i, L
′
i] Customer i [Ei, Li] d′

i [E ′
i, L

′
i]

1 34 [20, 50] 15 [85, 150] 9 100 [50, 100] 0 –

2 50 [35, 80] 10 [175, 200] 10 35 [40, 80] 10 [75, 110]

3 10 [53, 115] 40 [90, 110] 11 47 [130, 170] 10 [140, 165]

4 75 [20, 45] 5 [85, 130] 12 30 [150, 200] 20 [200, 230]

5 55 [60, 90] 10 [105, 120] 13 0 – 40 [70, 130]

6 20 [120, 150] 35 [130, 170] 14 45 [100, 140] 25 [110, 160]

7 0 – 60 [65, 100] 15 80 [135, 170] 0 –

8 55 [80, 130] 15 [90, 150]

Table 2. The optimal routes

Vehicle Optimal routes Demand

1 0 → 1 → 3 → 4 → 9 → 0′ → 11 → 15 → 0 0 → d34 → d10 → d10 → d11 → 0′ → d47 → d15 → 0
2 0 → 4 → 0′ → 9 → 6 → 0′ → 3 → 14 → 0 0 → d65 → 0′ → d44 → d20 → 0′ → d′40 → d′25 → 0

3 0 → 2 → 9 → 0′ → 8 → 5 → 0′ → 5 → 0 0 → d50 → d15 → 0′ → d55 → d′10 → 0′ → d′60 → 0
4 0 → 10 → 9 → 0′ → 15 → 0′ → 8 → 12 → 0 0 → d35 → d30 → 0′ → d65 → 0′ → d′15 → d′20 → 0
5 0 → 7 → 4 → 0′ → 6 → 12 → 0 0 → d′60 → d′5 → 0′ → d′35 → d30 → 0
6 0 → 13 → 1 → 10 → 0′ → 14 → 2 → 11 → 0 0 → d′40 → d′15 → d′10 → 0′ → d45 → d′10 → d′10 → 0

Table 3. The comparison results

No.
GA CS-GA

Z (∗ 104) Time (s) z Time (s)
1 1.87 365 1.45 201
2 2.19 452 1.34 248
3 1.64 584 1.29 189
4 1.74 617 1.47 239
5 1.92 514 1.51 274
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the convergence speed is accelerated by the use of the constraint satisfaction method.
It can be explained that the infeasible solution is removed by the constraint satisfaction
technique and the convergence speed is relatively faster than GA.

5. Conclusions. This paper focused on the vehicle routing problem with the potential
demand and soft time windows, and then a mathematical model is established to find the
optimal routes of vehicles by minimizing the total cost. In order to solve the proposed
model, an improved algorithm CS-GA is designed based on the constraint satisfaction
method and genetic algorithm. The results of the proposed algorithm compared to GA il-
lustrated the effectiveness and the applicability of the proposed algorithm in the numerical
example. Future research will focus on different types of vehicles.

Acknowledgment. This work is partially supported by Natural Science Foundation of
Hebei Province (No. G2014402027), Science and Technology Project of Hebei Province
(Nos. 15454707D, 16457402D), Humanities and Social Sciences Research Project for Uni-
versities in Hebei Province (No. 2014068), Three Modernization and Collaborative Devel-
opment Base Project of Hebei Province (No. SH2015QR01) and High level Talent Support
Project of Hebei Province (No. A201500112)

REFERENCES

[1] G. B. Dantzig and J. H. Ramser, The truck dispatching problem, Management Science, vol.6, no.1,
pp.80-91, 1959.

[2] A. Hadjar and F. Soumis, Dynamic window reduction for the multiple depot vehicle scheduling
problem with time windows, Computers & Operations Research, vol.36, no.7, pp.2160-2172, 2009.

[3] B. Kallehauge, J. Larsen and O. B. G. Madsen, Lagrangian duality applied to the vehicle routing
problem with time windows, Computers & Operations Research, vol.33, no.5, pp.1464-1487, 2006.

[4] F. B. De Oliveira, R. Enayatifar, H. J. Sadaei et al., A cooperative coevolutionary algorithm for the
multi-depot vehicle routing problem, Expert Systems with Applications, vol.43, pp.117-130, 2016.

[5] K. Tan, C. Cheong and C. Goh, Solving multiobjective vehicle routing problem with stochastic
demand via evolutionary computation, European Journal of Operational Research, vol.177, no.2,
pp.813-839, 2007.

[6] C. Archetti, M. G. Speranza and A. Hertz, A Tabu search algorithm for the split delivery vehicle
routing problem, Transportation Science, vol.40, no.1, pp.64-73, 2006.

[7] M. Yousefikhoshbakht, F. Didehvar and F. Rahmati, Solving the heterogeneous fixed fleet open
vehicle routing problem by a combined metaheuristic algorithm, International Journal of Production
Research, vol.14, no.2, pp.2565-2575, 2013.

[8] K. W. Pang, An adaptive parallel route construction heuristic for the vehicle routing problem with
time windows constraints, Expert Systems with Applications, vol.38, no.9, pp.11939-11946, 2011.

[9] Z. Wang and Z. Wang, A novel two-phase heuristic method for vehicle routing problem with back-
hauls, Computers & Mathematics with Applications, vol.57, nos.11-12, pp.1923-1928, 2009.

[10] G. Laporte, M. Gendreau, J. Y. Potvin et al., Classical and modern heuristics for the vehicle routing
problem, International Transactions in Operational Research, vol.7, no.4, pp.285-300, 2000.

[11] S. Minton, M. D. Johnston, A. B. Philips et al., Minimising conflicts: A heuristic repair method for
constraint satisfaction problems, Artificial Intelligence, vol.58, nos.1-3, pp.161-205, 2000.


