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Abstract. In some applications of frequency estimation, it is challenging to sample
at as high as Nyquist rate due to hardware limitations. The compressed sensing theory
asserts that one can recover sparse signals using undersampled measurements. Recently
the methods based on atomic norm techniques deal with continuous-valued frequencies
and completely eliminate basis mismatch of existing compressed sensing. However, com-
pressed sensing usually requires random sampling in data acquisition, which leads to
complex hardware. In this letter, we use coprime sampling instead of random sampling
to acquire data, and then utilize the method based on atomic norms to estimate the fre-
quency components of a mixture of several complex sinusoids. The simulations show
that coprime sampling can be brought into the method based on atomic norms and can
replace impractical random sampling. We combine the advantages of atomic norms and
coprime sampling to achieve continuous frequency estimation with deterministic sub-
Nyquist sampling. The proposed method obtains good results in some applications of
frequency estimation.
Keywords: Frequency estimation, Atomic norms, Coprime sampling, Sub-Nyquist sam-
pling

1. Introduction. Frequency estimation of multiple sinusoids has wide applications in
communications, audio, medical instrumentation and electric systems. Frequency es-
timation methods cover classical modified discrete Fourier transform (DFT), subspace
techniques such as “multiple signal classification” (MUSIC) [1] and “estimating signal
parameter via rotational invariance techniques” (ESPRIT) [2], and other advanced spec-
tral estimation approaches. In general, the sampling rate of the signal is required to be
higher than twice the highest frequency (i.e., Nyquist rate). However, it is challenging to
build sampling hardware when signal bandwidth is large. When the signal is sampled at
sub-Nyquist rate, it often leads to aliasing and attendant problem of frequency ambiguity.

Compressed sensing (CS) studies sparse signal recovery from far fewer measurements
and has brought significant impact on signal processing and information theory in the
past decade. Since the frequency components are usually assumed to lie on a fixed uni-
form grid, limitations are present in applications such as array processing, radar and
sonar, where the dictionary is typically specified by one or more continuous parameters.
A breakthrough came up recently. Candès and Fernandez-Granda deal directly with the
continuous frequency recovery problem and therefore completely eliminate “basis mis-
match” caused by grid discretization [3]. Inspired by [3], Tang et al. study the problem
of continuous frequency recovery from partial observations (i.e., incomplete data) based
on the atomic norm minimization [4]. An atomic norm soft thresholding method is pre-
sented in [5] in the presence of stochastic noise, a common assumption in the literature.
[6] investigates the frequency recovery problem in the presence of multiple measurement
vectors (MMVs) which share the same frequency components and extends the single
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measurement vector (SMV) atomic norm methods and their theoretical guarantees to the
MMV case. However, the sampling pattern in these methods is usually required to be
random, for example, the indices of the samples are selected uniformly at random from a
set {1, 2, . . . , N}, which becomes an obstacle to practical applications.

Coprime sampling and coprime sensor arrays are introduced and discussed in consid-
erable detail in [7]. Two uniform samplers with sample spacings pT and qT are used
where p and q are coprime and T has the dimension of space or time. In [8], coprime
sampling is combined with the MUSIC algorithm and a new approach to super resolution
line spectrum estimation in both temporal and spatial domain is proposed. However, this
combination does not eliminate the effect of basis mismatch because MUSIC still searches
the directions according to a fixed grid. In this letter, we combine the coprime sampling
with atomic norms to complement each other. In other words, we use coprime sampling
to acquire data and then utilize the method based on atomic norms to process these data.
It will be seen that the proposed method can estimate the frequency components of a mix-
ture of complex sinusoids accurately from deterministic sub-Nyquist measurements. The
proposed method avoids complex random sampling process, while holds high estimation
accuracy, which even outperforms conventional ESPRIT with normal sampling.

The remainder of the document is organized as follows. Section 2 will review the basic
theory of atomic norms. Section 3 will demonstrate our method. Section 4 will present
the simulation results. Finally, Section 5 draws conclusions and concludes the paper.

2. Problem Statement and Preliminaries.

2.1. Problem formulation. Consider a signal containing K frequency components with
unknown constant amplitudes and phases, and that additive noise is assumed to be a
zero-mean stationary complex white Gaussian random process. Suppose that we obtain
L observations of the signal with the Nyquist rate:

y⋆
ml =

K∑
k=1

skle
j2πfkm, (m, l) ∈ [N ] × [L] , (1)

which form an N × L matrix Y ⋆ = [y⋆
ml], where [N ] = {1, 2, . . . , N}, [L] = {1, 2, . . . , L}

and N is the number of uniform samples in each observation. Here (m, l) indexes the
entries of Y ⋆, fk ∈ [0, 1] denotes the k-th normalized frequency, skl ∈ C is the complex
amplitude of the k-th frequency component in the l-th observation. If the index set of
the measurement vectors Ω = [N ], it implies normal sampling. If |Ω| = M < N , this
corresponds to compressive sampling or sub-Nyquist sampling. The problem concerned is
to estimate the frequency components given Y ⋆

Ω , where Y ⋆
Ω takes the rows of Y ⋆ indexed

by Ω. This problem is referred to as joint sparse frequency recovery in the sense that
the multiple measurement vectors (MMVs) (i.e., the L columns of Y ⋆

Ω ) share the same K
frequencies. The single measurement vector (SMV) can be regarded as a special case of
MMVs, where L = 1.

2.2. Atomic norms and semidefinite formulation. To exploit the joint sparsity in
the MMVs, we let sk = [sk1, . . . , skL] ∈ C1×L. It follows that (1) can be written as

Y ⋆ =
K∑

k=1

a (fk) sk =
K∑

k=1

cka (fk) ϕk, (2)

where a (f) =
[
ej2πf , ej2π2f , . . . , ej2πNf

]T ∈ CN , ck = ∥sk∥2 > 0 and ϕk = sk/ck with

∥ϕk∥2 = 1. Let S2L−1 =
{
ϕ ∈ C1×L : ∥ϕ∥2 = 1

}
denote the unit complex (L − 1)-sphere

(or real (2L − 1)-sphere). Define the set of atoms

A ∆
=

{
a (f, ϕ) = a (f) ϕ : f ∈ [0, 1],ϕ ∈ S2L−1

}
. (3)
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It follows from (2) that Y ⋆ is a linear combination of K atoms in A. The atomic norm is
defined as the gauge function of conv(A), the convex hull of A [9]:

∥Y ∥A
∆
= inf {t > 0 : Y ∈ tconv (A)} = inf

{∑
k

ck : Y =
∑

k

ckak, ck > 0,ak ∈ A

}
. (4)

Roughly speaking, the atomic norm ∥•∥A can enforce sparsity in A because low-dimensio-
nal faces of conv(A) correspond to signals involving only a few atoms.

We need to estimate the frequency components of a sparse sum of complex exponen-
tials from only a subset of entries (i.e., Ω). The natural algorithm is the atomic norm
minimization problem

min
Y

∥Y ∥A, subject to YΩ = Y ⋆
Ω . (5)

To practically solve (5), a semidefinite programming formulation of ∥Y ∥A is provided:

min
W ,u

1

2
√

N
[tr (W ) + tr (Toep (u))] , subject to

[
W Y H

Y Toep (u)

]
≥ 0, (6)

where u ∈ CN and Toep (u) ∈ CN×N denotes a (Hermitian) Toeplitz matrix with

Toep (u) =


u1 u2 · · · uN

uH
2 u1 · · · uN−1
...

...
. . .

...
uH

N uH
N−1 · · · u1

 , (7)

where ui denotes the i-th entry of u. This positive semidefinite Toeplitz matrix Toep (u)
of rank K has an order-K Vandermonde decomposition [10]:

Toep (u) =
K∑

k=1

pka (fk) aH (fk) = A (f)ΓA (f) , (8)

where A (f) = [a (f1) , . . . , a (fK)] ∈ CN×K , Γ = diag (γ1, . . . , γK) with γk > 0 and
{fk} are distinct points in [0, 1]. Moreover, the decomposition is unique if K < N .
In some sense, Toep (u) is considered the data covariance matrix. Therefore, the true
frequencies can be uniquely obtained from the Vandermonde decomposition of Toep (u)
given K < N . The Vandermonde decomposition can be computed efficiently via root
finding or by solving a generalized eigenvalue problem [11].

As a result, (5) can be cast as the following semidefinite programming

min
Y ,W ,u

tr (W ) + tr (Toep (u)) , subject to

[
W Y H

Y Toep (u)

]
≥ 0 and YΩ = Y ⋆

Ω . (9)

The optimal solution u∗ to (9) can be solved by using an off-the-shelf semidefinite pro-
gramming solver. Then the frequencies can be computed based on the Vandermonde
decomposition of Toep (u∗). In [6], it has been proven that, if the minimum separation
of the frequencies ∆f satisfies ∆f ≥ 1

⌊(N−1)/4⌋ and Ω is selected uniformly at random

from [N ], then Y ⋆ is the unique optimizer to (9) with high probability. This conclusion
provides theoretical guarantee for random sampling. Yet some deterministic sampling
also can achieve the same effect. Next we employ coprime sampling to acquire the data
instead of random sampling, and it also works well as shown later.

3. Combination of Atomic Norms and Coprime Sampling. The coprime sampling
allows one to sample at two undersampled rates 1/(pT ) and 1/(qT ) (p, q ∈ Z+, p ⊥ q),
while offers O(pq) degrees of freedom, thus estimating the power spectrum of a signal at
a significantly higher resolution. This sampling scheme can be applied in spatial arrays
and temporal sampling. One example is that, for uniform spatial sampling with p and q
sensors with appropriate interelement spacings, the difference co-array has O(pq) freedoms
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Figure 1. The process diagram of coprime sampling in the time domain

which can be exploited in beamforming and in direction of arrival (DOA) estimation. Yet
another example is in the identification of sinusoids: from two sparsely sampled sets
several number of sinusoidal frequencies can be identified.

Firstly we demonstrate how to estimate the frequencies of time domain sinusoids buried
in noise using coprime sampling. The process diagram of coprime sampling is shown in
Figure 1, which is much simpler than random sampling. After coprime samping we obtain
two sub-Nyquist sequences, and the indices of the samples (or the sampling time points)
are

I = {p, 2p, · · ·} ∪ {q, 2q, · · ·} . (10)

Let y[i] denote the sample with index i, and the samples are arranged as follows

Y =

[
p1 p2 · · · pL

q1 q2 · · · qL

]
, (11)

where

pl = [y[2pql], y[p(2ql + 1)], · · · , y[p(2ql + q − 1)]]T , (12)

ql = [y[(2pl + 1)q], y[(2pl + 2)q], · · · , y[(2pl + 2p − 1)q]]T , (13)

and l = 1, 2, · · · , L. The minimum index and the maximum index in each column of Y
are 2pql and (2pl + 2p − 1)q, respectively. So the equivalent N is 2pq − q + 1. In some
sense, it seems like M = 2p+ q− 1 samples are selected from N = 2pq− q +1 consecutive
samples. In simulations we find that the estimation can attain quite high accuracy even
though without restriction on the minimum separation of true frequencies.

In the case of spatial signature, the spatial samples are analogous to the sensor locations,
and we will demonstrate to use two uniform sensor arrays with 2p − 1 and q antennas to
estimate DOAs of multiple impinging signals. The essence of uniform linear array DOA
is to estimate K arrival angles θk from the measurements

ym(t) =
K∑

k=1

sk(t)e
j2πdm·sin θk/λ, m = 0, 1, . . . , M − 1, (14)

where sk(t) is the k-th source signal and λ is the wavelength of the impinging signals.
Traditionally, d = λ/2, and the problem is equivalent to estimating fk = sin θk/2 as that
in (1). In MUSIC and some methods based on CS [12, 13], the arrival angles θk are
assumed to align with a fixed grid, which does not agree with practical condition. We use
the above method based on atomic norms to attain continuous arrival angle estimation.
Figure 2 shows a uniform linear array (ULA) with 2p − 1 sensors having interelement
spacing qd, and a ULA with q sensors having spacing pd. The observation matrix is
formed as

Y =

[
p(t1) p(t2) · · · p(tL)
q(t1) q(t2) · · · q(tL)

]
, (15)

where p(t) =
[
y0(t), yp(t), . . . , y(q−1)p(t)

]T
and q(t) =

[
yq(t), y2q(t), . . . , y(2p−1)q(t)

]T
. The

number of snapshots is corresponding to the measurement times L in MMV. It is worth
mentioning that the methods based on CS can estimate the arrival angles even from a
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Figure 2. Coprime pair of uniform linear arrays with spacings pd and qd

single snapshot (i.e., SMV), which is an advantage compared with subspace-based meth-
ods.

4. Numerical Simulations. Firstly we simulate frequency estimation of multiple sinu-
soids buried in noise. The signals contain K frequency components with random ampli-
tudes and random phase angles. The coprime undersampled ratios are set to p = 3 and
q = 7. The normalized frequencies are assumed to distribute uniformly in (0, 1]. Complex
white Gaussian noise is added to the measurements. K = 3 and L = 20 are fixed and the
signal-to-noise ratio (SNR) varies from 10dB to 30dB. To keep it simple, we assume K
is known, so the K frequencies corresponding to the largest K amplitudes are estimated
results. The mean square errors (MSE) of estimated frequencies fes different from true

frequencies are computed by MSE =

√
K∑

k=1

(fes − fk)
2

/
K. The MSE are obtained from

500 experiments for each SNR. For the sake of comparison, we also sample the signals
at the normal rate and use conventional ESPRIT to estimate the frequencies. The same
number of samples is used for our method and ESPRIT. As shown in Figure 3, the MSE
of the proposed method are smaller than ESPRIT. The accuracy of ESPRIT is heavily
dependent on the number of measurements. When the number of samples is not large,
the method based on CS and atomic norms has a significant advantage over ESPRIT.

Then we apply the proposed method in spatial domain. We provide a simple simulation
to demonstrate the performance of the proposed method in gridless DOA estimation. We
consider p = 3, q = 7, K = 3 sources with directions of 10.5◦, 20.1◦ and 21.0◦ respectively,
and L = 30. The source signals of each source are generated with unitary amplitudes
and random phases. Complex white Gaussian noise at SNR = 20dB is added to the
measurements. The DOA estimation results of the proposed method are presented in
Figure 4. The MUSIC algorithm is also considered for comparison. MUSIC uses the same
number of snapshots with our method and the grid interval in MUSIC is 0.5◦. It is shown
that the three frequency components are correctly identified using the proposed method
while MUSIC fails. Obviously, MUSIC requires a sufficiently dense grid to guarantee
precision, increasing the amount of computation.

Finally, we compare the errors of DOA estimation with ESPRIT at different SNRs.
Meanwhile, in spite of impracticality of random sampling, we construct random arrays in
the program to compare with our method. K = 3 and L = 20 are fixed and the SNR
varies from 10dB to 30dB. For convenience, we calculate the MSE of the corresponding
frequencies instead of directions. The average values of MSE are obtained from 500 trials
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Figure 3. The average MSE of frequency estimation for different SNRs

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

A
m

pl
itu

de

 

 

Proposed method
MUSIC
True directions

Figure 4. DOA estimation using the proposed method and MUSIC
(shown only on the direction interval [0◦, 30◦])

for each SNR. As shown in Figure 5, the proposed method has the same accuracy with
that using random arrays, and they both outperform ESPRIT. This simulation illustrates
that the deterministic coprime sampling can replace random sampling.

5. Conclusions. In this letter, we combine the advantages of atomic norms and coprime
sampling to achieve continuous frequency estimation of multiple sinusoids with deter-
ministic sub-Nyquist sampling. The implementation details are illustrated in two typical
applications, namely spatial arrays and temporal sampling. The performance of the pro-
posed method is demonstrated through simulations. The method completely eliminates
the effect of grid discretization and has higher accuracy than conventional ESPRIT. The
coprime sampling even has the same effect with random sampling required in CS. Further
research is needed to explain the principle in theory in future studies.
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Figure 5. The average MSE of DOA estimation for different SNRs
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