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Abstract. This paper studies the vibrational resonance in a parallel array of dynami-
cal nonlinearities with saturation and a high-frequency interference signal works as the
noise in each nonlinear system. By tuning the high-frequency signal level, the signal-to-
noise ratio (SNR) can be enhanced. The numerical results show that the high-frequency
interference signal and the dynamical nonlinearity with saturation are positive to weak-
periodic signal processing.
Keywords: High-frequency, Vibrational resonance, Weak signal, Dynamical nonlinear-
ity

1. Introduction. Stochastic resonance (SR) is a nonlinear phenomenon where noise
plays a constructive role and a weak signal can be enhanced in some certain nonlin-
ear systems [1, 2, 3, 4, 5, 6]. The method of enhancement via noise is still useful for
nonlinear signal processing. Then vibrational resonance (VR) [7] is a similar effect to SR
where the system is under the action of a two-frequency signal and the internal noise is
replaced by a high-frequency interference signal. The VR effect is considered as a new
form of SR. Soon afterwards, the research fields of VR are extended to nonlinear circuits,
optimal devices, excitable neurons and so on [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Then,
compared with the SR method, a better result of signal processing can be obtained by VR
method in a bistable system [15]. The output signal-to-noise ratio (SNR) was used as a
typical quantifier for SR [3, 18, 19], i.e., a non-monotonic function of the background noise
intensity. Similarly, the SNR is also employed for studying the VR effects in a nonlinear
system.

In this paper, we focus on the enhancement of the SNR, i.e., the high-frequency vi-
brational resonance effect in an uncoupled parallel array of dynamical nonlinearity with
saturation [20, 21] subject to a weak-periodic signal in additive white noise. An internal
high-frequency interference sinusoidal signal with different frequencies is as the internal
array noise component in each subsystem. A dynamical nonlinearity with saturation can
be as a class of potential vibrational resonator or signal processor. A mass of behaviors of
the output SNR are observed which is a function of the high-frequency sinusoidal level and
the array size. It is shown that the high-frequency vibrational resonance effect appears in
an array of dynamical nonlinearity with saturation upon increasing high-frequency sinu-
soidal level and the array size. It is demonstrated that similar enhanced propagation can
be obtained by replacing the array noise with a high-frequency signal.

These results show that a parallel array of dynamical saturating nonlinearities can be
practically exploited, and is useful for nonlinear signal processing. In practical processing,
sinusoidal interference signal is easier produced and controlled than noise. It is shown that
the easily implementable feature of sinusoidal vibrations and the achievable maximum
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of SNR of an infinite array, indicate a preferable strategy for processing weak signals
via the VR mechanism. It is expected the results of VR will be further applicable for
telecommunication signal detection, neuroscience, and medicine. For instance, informative
signals are usually modulated by high-frequency carriers. Then, in some complicated
environments, the high-frequency vibrations, not restricted to sinusoidal waves, might
elicit more information about inputs to form an ensemble of suboptimal systems. Also,
the tractable method of an infinite array might bring some enlightenment to the high-
frequency circuit design.

2. Theoretical Model. Consider the observation of a process k(t) = s(t) + β(t), where
the component s(t) is a weak-periodic sinusoid signal with period T and a maximal
amplitude A (|s(t)| ≤ A). The component β(t) is zero-mean additive Gaussian noise,
independent of s(t), and has a probability density function (PDF) fβ and variance σ2

β =

Eβ[x2] =
∫ ∞
−∞ x2fβ(x)dx. The process k(t) is applied to an uncoupled parallel array

of N dynamical nonlinearities g. In these nonlinearities, a high-frequency interference
sinusoidal signal as the internal noise has a much higher frequency than input signal s(t)
which can be written by Equation (1)

θn(t) = Aθ sin(2πfnt), (1)

where Aθ is the amplitude and fn is the frequency of the high-frequency sinusoidal signal
in the nonlinear array. So the outputs xn(t) of each nonlinearity can be defined as

xn(t) = g(k(t) + θn(t)), n = 1, 2, . . . , N, (2)

The array outputs U(t) are averaged and the response of the array is written as

U(t) =
1

N

N∑
n=1

xn(t). (3)

For a weak-periodic signal s(t) (A → 0), the mean at a fixed time t is E[U(t)] and the
nonstationary expectation is E[U2(t)]. Based on the former, the variance var[U(t)] can be
obtained. The system performance can be evaluated by the output SNR, defined as the
power contained in the output spectral line at fundamental frequency 1/T divided by the
power contained in the noise background in a small frequency bin ∆B around 1/T , that
is [3]

Rout =
|⟨E[U(t)] exp[−i2πt/T ]⟩|2

⟨var[U(t)]⟩H(1/Ts)∆B
, (4)

with the operator ⟨· · · ⟩ = 1
T

∫ T

0
· · · dt indicating a temporal average [3]. Similarly, the

input SNR is given by

Rin =
A2/4

σ2
β∆B∆t

. (5)

As the array size N → ∞, the output SNR of an array of the nonlinearities can be
defined as

R∞
out =

|⟨E[xn(t)] exp(−i2πt/T )⟩|2

⟨E[xn(t)xm(t)] − E2[xn(t)]⟩H(1/Ts)∆B
, (6)

for n,m = 1, 2, . . . , N and n ̸= m.
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3. Experiments. A model with a so-called ‘soft’ potential is considered as Equation (7).

Cẋ = − x

R
+ J tanh(νx) + s(t) + β(t) + θn(t), (7)

Such a model describes an element of an electronic neural network, where x is the neuron’s
membrane potential, C is the input capacitance, R is the transmembrance resistance, and
J is a self-coupling coefficient. The external noise β(t) is the zero-mean generalized
Gaussian noise, which is a flexible family containing some common important cases (e.g.,
Gaussian noise, Laplacian noise). The PDF of the generalized Gaussian noise β(t) is
written as

fβ(x) =
c1

σβ

exp
(
−c2

∣∣∣ x

σβ

∣∣∣α)
, (8)

where c1 and c2 are written by Equation (9) and Equation (10)

c1 =
α

2
Γ

1
2

(
3α−1

)
/Γ

3
2

(
α−1

)
, (9)

c2 =
[
Γ

(
3α−1

)
Γ

(
α−1

)]α/2
. (10)

In Figure 1 and Figure 2, the input signal is a weak signal with amplitude A = 0.2 and
frequency f . The decay parameter of the external noise β(t) is set α = 2, i.e., Gaussian
noise with root-mean-square (RMS) amplitude σβ = 0.3. The high-frequency sinusoidal
interference signal of the array follows θn(t) = Aθ sin[2π(20+n)ft] and has a much higher
frequency fn = (20 + n)f , n = 1, 2, . . . , N . Figure 1 and Figure 2 demonstrate the
evolution of the output SNR as a function of the amplitude Aθ of the high-frequency
interference sinusoidal signal θn(t) and the array size N . From the bottom up, the output
SNR of the nonlinear array expressed as Equation (6) is shown for N = 1, 5, 10, 50 and
∞ with solid lines. It is shown that the vibrational resonance evolutions of the output
SNR are demonstrated upon increasing the array interference level Aθ and the array size
N , i.e., the vibrational resonance effect both exist in Figure 1 and Figure 2. It is shown
that an uncoupled parallel dynamical array with high-frequency interference signal plays
an constructive role for transmitting a weak-periodic signal.
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Figure 1. Output SNR Rout as a function of the amplitude Aθ of the array
high-frequency interference sinusoidal signal θn(t) with J = 0.5
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Figure 2. Output SNR Rout as a function of the amplitude Aθ of the array
high-frequency interference sinusoidal signal θn(t) with J = 1
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Figure 3. Output SNR Rout as a function of the slope ν of the dynamical
nonlinearity of Equation (6) with array size N → ∞

There are some differences between Figure 1 and Figure 2. The high-frequency vibra-
tional resonance effect is obviously in Figure 1, but the output SNR is bigger in Figure 2
when the array size N → ∞. What is more, when J = 0.5 the maximum of the output
SNR can be obtained nearby the sinusoidal signal amplitude Aθ = 1. However, with
J = 1 the peak of the output SNR is acquired around the sinusoidal signal amplitude
Aθ = 1.5. The high-frequency interference sinusoidal signal of the dynamical nonlinear
array can induce the vibrational resonance effect for transmitting weak-periodic signal
upon increasing the high-frequency interference signal level and the array size.

It is shown that the output SNR is plotted as a function of the slope ν of the dynamical
nonlinearity of Equation (7) as the array size N → ∞ in Figure 3. The slope of Equation
(7) takes C = 1, R = 1. The amplitude Aθ of the array high-frequency interference
sinusoidal signal θn(t) is set Aθ = 1 in Figure 3(a) and Aθ = 1.5 in Figure 3(b) respectively.
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Aterisks correspond to the output SNR with J = 0.5, and circles represent the output
SNR with J = 1. It is demonstrated the results as the array size N → ∞ accord to the
output SNR of Figure 1 and Figure 2.

4. Conclusion. In this paper, the high-frequency vibrational resonance effect of an un-
coupled parallel array of dynamical nonlinearities with saturation is studied. The output
SNR can be enhanced by an uncoupled parallel array of dynamical nonlinearities. When
the parameters of the dynamical nonlinearities with saturation vary, different VR effects
can be obtained. We only study the dynamical nonlinearities with saturation. There
are other interesting nonlinearities such as static nonlinearities, which may be of interest
for further studies of weak signal processing in the context of VR. Sinusoidal interfer-
ence signal is easier obtained and controlled than noise in practical situations and VR is
meaningful for practical signal processing.
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