
ICIC Express Letters ICIC International c⃝2017 ISSN 1881-803X
Volume 11, Number 3, March 2017 pp. 517–524

PERFORMANCE LIMITATION OF DISCRETE NETWORKED
CONTROL SYSTEMS BASED ON PACKET DROPOUTS

AND CHANNEL NOISE

Qingsheng Yang, Jie Wu∗, Xianhe Zhang and Tao Han

College of Mechatronics and Control Engineering
Hubei Normal University

No. 11, Cihu Road, Huangshi 435002, P. R. China
∗Corresponding author: wujiezhan@163.com

Received July 2016; accepted October 2016

Abstract. The performance limitation of single-input and single-output (SISO) dis-
crete networked control systems (NCSs) with packet dropouts and channel noise is stud-
ied in this paper. The white noise in the forward channel and the packet dropouts in
the feedback channel are considered. A new result is derived and it is shown that the
performance limitation depends on the intrinsic properties of a given plant such as non-
minimum phase zeros, unstable poles, as well as the packet dropouts and the white noise.
The result shows how the packet dropouts and white noise of communication channel may
fundamentally constrain the tracking capability of NCSs. A typical example is given to
illustrate the theoretical results.
Keywords: Performance limitation, Packet dropouts, White noise, Unstable poles, Non-
minimum phase zeros

1. Introduction. In recent years, the network control system has been successfully used
in various fields [1, 2]. Compared with conventional point-to-point communication system,
networked control system has many advantages in installation, wiring and maintenance.
In networked control systems, the data is transmitted to the controller and the controlled
object through the channel. The analysis of the control system will be more complicated,
due to the introduction of the communication network into the forward channel and the
feedback control loop. The performance of the control system will be declined by the in-
fluence such as the communication bandwidth, quantization, encoding, time delay, packet
dropouts and white noise, which may even lead to instability of the system. Currently,
the theory about modeling and stability analysis in NCSs has been quite mature [3]. How-
ever, from the application point of view, it is not enough just to consider the stability of
networked control systems, the performance limitation should also be considered in NCSs.
Therefore, it is very important to study the optimal design of discrete networked control
systems. At the same time, it is necessary to research the influence of communication
parameters on the performance limitation of the systems.

For many years, the performance limitation of the design in control system has been an
important research field of the control science and engineering subjects [4]. At present,
many domestic and foreign scholars have made a lot of research results in this area. The
optimal tracking performance of the SISO networked control systems based on network
input energy constraint is studied in [5]. The tracking performance limitation of the
multi-input and multi-output (MIMO) networked control systems with two parameter
controllers is studied in [6]. The optimal tracking performance of tracking step signal in
NCSs is studied in [7].

In this paper, the performance limitation of tracking unit step signal in SISO discrete
networked control systems is studied, with the main consideration based on data packet

517



518 Q. YANG, J. WU, X. ZHANG AND T. HAN

dropouts in the feedback channel and white noise in the forward channel. The perfor-
mance index is characterized by the energy of the tracking error, and the limit value is
obtained by the technique of spectral decomposition. The results show that regardless
of compensation, the tracking performance limitation of the systems is determined by
the intrinsic properties of a given plant and the communication parameters, which will
provide theoretical guidance for the design of networked control systems. Furthermore,
the tracking performance limitation of NCSs depends on the intrinsic properties of a given
plant such as non-minimum phase zeros, unstable poles, as well as the packet dropouts
and the white noise. Finally, the simulation results verify the correctness of the theory.

This paper is organized as follows. Section 2 introduces the problem formulation. The
performance limitation with packet dropouts and white noise is studied in Section 3. A
typical example is given to illustrate the results in Section 4. The paper conclusions and
future research directions are presented in Section 5.

2. Problem Formulations. The symbols used in this paper are standard. z̄ denotes
the conjugate of a complex number z, and x(z) denotes the z-transformation of discrete
time series x(z). Define D := {z : |z| < 1}, D̄ := {z : |z| ≤ 1}, D̄c := {z : |z| > 1} and
∂D := {z : |z| = 1} as an open unit circle, a closed unit circle, an exterior of the closed
unit circle and a unit circle, respectively. L2 represents Hilbert space:

∥F∥2
2 :=

1

2π

∫ π

−π

∥∥F (ejθ
)∥∥2

F
dθ < ∞

The inner product in the L2 Hilbert space is:

⟨F,G⟩ :=
1

2π

∫ ∞

−∞
tr
[
FH

(
ejθ
)
G
(
ejθ
)]

dθ

For ∀F , G ∈ L2, if ⟨F, G⟩ = 0, then they are orthogonal. L2 can be decomposed into
two orthogonal subspaces, and they are defined as H2 and H⊥

2 . Finally, define RH∞ is
all stable, regular transfer function.

We establish the SISO discrete networked control systems as depicted in Figure 1, where
the problem is to investigate the performance limitation of the systems based on packet
dropouts and white noise.

In Figure 1, G represents the given plant and K is denoted as one-parameter compen-
sator, whose transfer functions are G(z) and K(z), respectively. dr and n represent the
data packet dropouts in the feedback channel and the white noise in the forward channel,
respectively. Among them, dr is a random process of Bernoulli distribution, used to sim-
ulate the process of data packet dropouts. The parameter dr represents whether or not a
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Figure 1. NCSs based on packet dropouts and white noise constraints
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packet is dropped.

dr =

{
0 if the systems output is not successfully transmitted to the controller
1 if the systems output is successfully transmitted to the controller

And the distribution probability for dr is: P {dr = 1} = 1 − q, P {dr = 0} = q, 0 ≤
q < 1, and q represents the packet dropout probability. Signals r, y and u represent the
reference input, the system output and control input signals, respectively. The signals r̃,
ỹ, ũ and ñ denote the z-transformation of signals r, y, u and n, respectively.

According to Figure 1, it is easy to obtain:

ũ = ñ + K (r̃ − drỹ) , ỹ = Gũ (1)

According to (1), we can get:

ỹ =
KG

1 + KdrG
r̃ +

G

1 + KdrG
ñ (2)

For a given reference input r, the tracking error of the networked control system is:

e = r − y (3)

According to (2) and (3), we can get the z-transformation of e as follows:

ẽ = r̃ − ỹ =

(
1 − KG

1 + KdrG

)
r̃ − G

1 + KdrG
ñ (4)

According to [8], we can obtain:

ẽ = T1r̃ + T2ñ (5)

where T1 =
(
1 − KG

1+(1−q)KG

)
, T2 = − G

1+(1−q)KG
.

The tracking performance index of NCSs is defined as:

J := E ∥ẽ∥2
2 = E ∥r̃ − ỹ∥2

2 (6)

Define K as a set of controllers that stabilize the control system. The objective of this
paper is to find the optimal controller in the set K, which makes network control systems
achieve optimal tracking performance, and the exact expression of the optimal tracking
performance will be derived as follows:

J∗ = inf
K∈K

J (7)

3. Performance Limitation with Packet Dropouts and White Noise. For any
transfer function G, consider a coprime factorization of (1 − q)G as:

(1 − q)G =
N

M
(8)

where N, M ∈ RH∞, and it meets:

MX − NY = 1 (9)

where X, Y ∈ RH∞.
According to [9], it is well known that all controllers which make the control system

stable can be expressed by Youla parameters.

K :=

{
K : K = −(Y − MQ)

X − NQ
,Q ∈ RH∞

}
(10)

It is well known that a non-minimum phase transfer function can be decomposed into
a minimum phase part and an all-pass factor. Then,

N(z) = (1 − q)LzNz, M = BpMm (11)
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where Lz and Bp are all-pass factors, and Nz and Mm are the minimum phase parts. And
Lz includes all non-minimum phase zeros si ∈ D̄c, i = 1, . . . , ns of the given plant, and
Bp includes all unstable poles pj ∈ D̄c, j = 1, . . . , m of the given plant.

According to [10], Lz and Bp can be expressed as:

Lz(z) =
ns∏
i=1

z − si

1 − si

1 − s̄i

1 − s̄iz
, Bp(s) =

m∏
j=1

z − pj

1 − p̄jz
(12)

Assume that the reference input signal r and the channel white noise n are independent
of each other, and consider the reference input signal r as a unit step signal, whose z-
transformation is: r̃ = z

z−1
. The tracking performance of NCSs can be rewritten as:

J =

∥∥∥∥T1
1

z − 1

∥∥∥∥2

2

+ ∥T2∥2
2 σ2 (13)

where σ2 is the variance of the white noise n in the forward channel.
According to (5), (8), (9) and (10), we can obtain:

T1 = 1 +
1

1 − q
N(Y − MQ), T2 = − 1

1 − q
N(X − NQ) (14)

According to (13) and (14), J can be rewritten as:

J =

∥∥∥∥(1 +
1

1 − q
N(Y − MQ)

)
1

z − 1

∥∥∥∥2

2

+

∥∥∥∥ 1

1 − q
N(X − NQ)

∥∥∥∥2

2

σ2 (15)

According to (6) and (15), we can get the optimal tracking performance J∗ as follows:

J∗ = inf
Q∈RH∞

∥∥∥∥(1 +
1

1 − q
N(Y − MQ)

)
1

z − 1

∥∥∥∥2

2

+ inf
Q∈RH∞

∥∥∥∥ 1

1 − q
N(X − NQ)

∥∥∥∥2

2

σ2 (16)

Define J∗ as:

J∗ = J∗
1 + J∗

2 (17)

where J∗
1 = inf

Q∈RH∞

∥∥∥(1 + 1
1−q

N(Y − MQ)
)

1
z−1

∥∥∥2

2
, J∗

2 = inf
Q∈RH∞

∥∥∥ 1
1−q

N(X − NQ)
∥∥∥2

2
.

Theorem 3.1. For NCSs as shown in Figure 1, assuming that the plant has many unstable
poles pj ∈ C+, j = 1, . . . , m, and non-minimum phase zeros zi ∈ C+, i = 1, . . . , n, if
(1 − q)G(z) can be decomposed as (8) and (11), the tracking performance limitation of
network control systems is:

J∗ ≥
ns∑
i=1

|si|2 − 1

|si − 1|2
+

m∑
i,j=1

(
|pi|2 − 1

) (
|pj|2 − 1

)
b̄jbi (1 − p̄j) (1 − pi)

γH
j γj

p̄jpi − 1

+
ns∑

j,i=1

(1 − si) (1 − sj)
(
|si|2 − 1

) (
|sj|2 − 1

)
D̄iDj (1 − s̄i) (1 − s̄j)

ϕHϕ

s̄isj − 1
σ2

where γj = 1 − 1
1−q

L−1
z (pj), ϕ = Nn(zi)X(zi), bj =

∏
i∈N
i̸=j

pj−pi

1−pj p̄i
, Di =

∏
j∈N
j ̸=i

si−sj

1−sj

1−s̄j

1−s̄jsi
.

Proof: Firstly, calculating J∗
1 , according to (11) and (17), we can obtain:

J∗
1 = inf

Q∈RH∞

∥∥∥∥(1 + LzNn(Y − MQ))
1

z − 1

∥∥∥∥2

2
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Because Lz is an all-pass factor, then

J∗
1 = inf

Q∈RH∞

∥∥∥∥(1 + LzNn(Y − MQ))
1

z − 1

∥∥∥∥2

2

= inf
Q∈RH∞

∥∥∥∥((L−1
z − 1) + (1 + Nn(Y − MQ))

1

z − 1

∥∥∥∥2

2

Because of L−1
z − 1 ∈ H⊥

2 , 1 + Nn(Y − MQ) ∈ H2. Furthermore, J∗
1 can be expressed

as:

J∗
1 =

∥∥∥∥(L−1
z − 1

) 1

z − 1

∥∥∥∥2

2

+ inf
Q∈RH∞

∥∥∥∥(1 + NnY − NnMQ)
1

z − 1

∥∥∥∥2

2

Define J∗
1 as:

J∗
1 = J∗

11 + J∗
12 (18)

where J∗
11 =

∥∥(L−1
z − 1) 1

z−1

∥∥2

2
, J∗

12 = inf
Q∈RH∞

∥∥(1 + NnY − NnMQ) 1
z−1

∥∥2

2
.

By a simple calculation, we can get:

J∗
11 =

ns∑
i=1

|si|2 − 1

|si − 1|2
(19)

According to (11), we can get:

J∗
12 = inf

Q∈RH∞

∥∥∥∥((1 + NnY ) − NnBpMmQ)
1

z − 1

∥∥∥∥2

2

Because Bp is an all-pass factor, then

J∗
12 = inf
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Bp

− NnMmQ

)
1

z − 1

∥∥∥∥2

2

According to the partial fraction decomposition, we can obtain:

1 + NnY

Bp

=
m∑

j=1
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z − pj

1 + Nn(pj)Y (pj)
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where bj =
∏
i∈N
i ̸=j

pj−pi

1−pj p̄i
, R1 ∈ RH∞.

Therefore, J∗
12 can be expressed as:
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]
1
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1
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2

where R2 ∈ RH∞, and

R2 = R1 +
m∑

j=1

1 − p̄j

1 − pj

1 + Nn(pj)Y (pj)

bj
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Because of
m∑

j=1

|pj |2−1

z−pj

1+Nn(pj)Y (pj)

(1−pj)bj
∈ H⊥

2 , R2 − NnMmQ ∈ H2. Furthermore, J∗
12 can be

expressed as:

J∗
12 =

∥∥∥∥∥
m∑

j=1

|pj|2 − 1

z − pj

1 + Nn(pj)Y (pj)

(1 − pj)bj

∥∥∥∥∥
2

2

+ inf
Q∈RH∞
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1

z − 1
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2

Because Nn and Mm represent the external functions and minimum phase, respectively,
we can obtain:

inf
Q∈RH∞

∥∥∥∥(R2 − NnMmQ)
1

z − 1

∥∥∥∥2

2

= 0

Then,

J∗
12 =

∥∥∥∥∥
m∑

j=1

|pj|2 − 1

z − pj

1 + Nn(pj)Y (pj)

(1 − pj)bj

∥∥∥∥∥
2

2

Meanwhile, according to M(pj) = 0, we can get:

Nn(pj)Y (pj) = − 1

1 − q
L−1

z (pj)

By a simple calculation, we can get:

J∗
12 =

m∑
i,j=1

(
|pi|2 − 1

) (
|pj|2 − 1

)
b̄jbi (1 − p̄j) (1 − pi)

γH
j γj

p̄jpi − 1
(20)

where γj = 1 − 1
1−q

L−1
z (pj).

According to (19) and (20), we can obtain:

J∗
1 =

ns∑
i=1

|si|2 − 1

|si − 1|2
+

m∑
i,j=1

(
|pi|2 − 1

) (
|pj|2 − 1

)
b̄jbi(1 − p̄j)(1 − pi)

γH
j γj

p̄jpi − 1
(21)

According to J∗
1 , similarly, we can get:

J∗
2 =

ns∑
j,i=1

(1 − si)(1 − sj)
(
|si|2 − 1

) (
|sj|2 − 1

)
D̄iDj(1 − s̄i)(1 − s̄j)

ϕHϕ

s̄isj − 1
(22)

where ϕ = Nn(zi)X(zi).
The proof is completed.

4. Illustrative Example. The unstable system model is considered as follows:

G(z) =
z − 2

(z − k)(z + 1)

For the given plant, the non-minimum phase zero is located at z = 2, and the unstable
pole is located at p = k. Here, the value of the correlation value is: σ = 0.2, and then the
performance limitation of network control systems is:

J∗ = 3 +
k + 1

k − 1

(
1 − 1

1 − q

1 − 2k

k − 2

)2

− 3

2 − k
σ

The performance limitation of NCSs based on the influence of different packet dropouts
and poles is shown in Figure 2.

As can be seen from Figure 2, different packet dropouts, probability affects the tracking
performance of networked control systems, the greater the probability of packet dropouts
is, the worse the tracking performance of the system is; at the same time, it can also be
seen that the performance of NCSs becomes worse when the unstable poles of the given
plant are close to the non-minimum phase zeros.



ICIC EXPRESS LETTERS, VOL.11, NO.3, 2017 523

0
0.2

0.4
0.6

0.8
1

1

2

3

4

5
0

0.5

1

1.5

2

2.5

3

x 10
5

Data packet loss rate q
unstable pole p

T
ra

ck
in

g 
pe

rf
or

m
an

ce
 li

m
ita

tio
n 

J 
*  

Figure 2. The performance limitation of NCSs based on packet dropouts constraint

5. Conclusion. This paper studies SISO discrete networked control systems tracking
unit step signal based on packet dropouts and white noise constraints. In the systems,
the data packet dropouts in the feedback channel and the white noise in the forward
channel are mainly considered. The tracking performance index is characterized by the
difference between the output of the plant and the reference signal. The results show that
the performance limitation depends on the intrinsic properties of a given plant such as
non-minimum phase zeros, unstable poles, as well as the packet dropouts and additive
white noise, furthermore, how the packet dropouts and white noise affect the tracking
ability of NCSs, which will provide theoretical guidance for the design of NCSs. The
simulation example shows the correctness of the conclusion.

Possible future research extensions to this work include studying more general plants
such as MIMO complex systems, and more parameters of communication channel con-
straints such as the bandwidth effect, the quantization effect, and the encoding effect.
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