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Abstract. Visual tracking is a challenging problem in computer vision. Recently, cor-
relation filter-based trackers (CFTs) have achieved excellent performance in different
competitions and shown great robustness to challenging situations during the tracking
process. The core component of the most trackers is a discriminative classifier and its
task is to distinguish the target from the surrounding environment. Most of the methods
train the classifier with translated and scaled sample patches. However, these samples are
riddled with redundancies because there are lots of overlapping pixels in it. Therefore,
these samples restrict the speed and stability of the processing of regression problem. To
solve this problem, an analytic model for datasets of thousands of translated patches is
adopted and a data circulant matrix consists of these patches. According to some prop-
erties of circulant matrix with the discrete Fourier transform, the non-linear regression
can be solved with the kernel trick in a fast way. In addition, a separate filter is learned
for scale estimation during the tracking process. Our method performs well in different
challenging situations and the speed of our tracker can arrive to hundreds of frames per
second. The results of extensive experiments on benchmark datasets prove the effective-
ness of our method.
Keywords: Visual tracking, Circulant matrix, Discrete Fourier transform, Kernel meth-
ods, Ridge regression, Correlation filters

1. Introduction. Visual tracking plays an important role in many research fields such
as video monitoring, automobile navigation and activity recognition. Recently, discrimi-
native learning methods have been widely adopted and made a great breakthrough. The
goal of this method is to learn a classifier to separate the target object from the back-
ground. The classifier can be evaluated exhaustively at many locations, in order to detect
it in subsequent frames. Generally, we pay more attention to the positive samples which
characterize the object of interest for the classifier. However, the negative samples are
also very important to discriminative methods because these samples contain useful back-
ground information which can be better used to train the classifier. A crucial challenging
factor is that unlimited amount of negative samples can be obtained from an image.
Due to taking account of the time-sensitive nature of tracking, current tracking methods
usually choose only a few negative samples in each frame [1-5]. Although this sampling
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method is understandable, limited negative samples are the main factor inhibiting perfor-
mance in tracking. In order to solve this problem, Henriques et al. [6] proposed kernelized
correlation filters (KCF) that develop tools which are called circulant matrices, to analyti-
cally incorporate thousands of samples at different relative translations, without iterating
over them explicitly. They made it possible because they discovered that some learning
algorithms actually become easier with more samples, if we use a specific model for trans-
lations. Although the tracking method proposed by Henriques et al. performs well, this
method cannot solve the problem of scale variations. In order to overcome this problem
and exploit the circulant matrices better, we propose our method which not only exploits
the advantage of the circulant matrices but also solves the problem of scale variation that
KCF cannot deal with. Our method is tested on the benchmark dataset and we compare
the results of experiments with the top ten algorithms in visual tracking.

The paper is organized as follows. Section 2 introduces the method of sampling and
the property of circulant matrix which consists of samples. Section 3 introduces the non-
linear regression in object tracking and the effective method to deal with it. Section 4
presents the detection model. Section 5 presents the scale estimate method. In Section
6, we compare the results of the proposed method with the state-of-the-art methods on
benchmark. Section 7 concludes the paper.

2. Sampling and Circulant Matrices. In this section, we introduce the method of
sampling and the relationship between samples and circulant matrix. Firstly, consider an
n×1 vector which represents a patch with the object of interest denoted x. It will be called
the base vector (a positive sample) and several virtual samples which are called the nega-
tive samples are obtained by translating the base sample. We can model one-dimensional
translations of the base vector by a cyclic shift operator, which is the permutation matrix

P =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 0

 . (1)

The product Px = [xn, x1, . . . , xn−1]
T shifts x by one element. We can achieve a large

translation by using the matrix P ux. When u is a negative value, it means shifting in the
reverse direction. The full set of shifted signals is obtained with

{P ux|u = 0, . . . , n − 1}. (2)

In order to compute a regression with shifted samples, we use the set of Equation (2) as
the row of a data matrix X:

X = C(x) =


x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
. . . . . .

...
x2 x3 · · · x4 x1

 . (3)

X is a circulant matrix and it has several interesting properties [7,8]. The most useful
properties are that all circulant matrices can be diagonalized by the discrete Fourier
transform (DFT), regardless of the generating vector x [7]. This can be written as

X = Fdiag (x̂) FH , (4)

where F is a constant matrix which is known as the DFT matrix and it computes the
DFT of any input vector as F(z) = nFz. x̂ denotes the DFT of the generating vector,
x̂ = F(x). FH is the Hermitian transpose.
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3. Kernel Trick and Non-Linear Regression. The most important part of tracking
process is how to solve the regression. The regression of the tracking-by-detection is
often non-linear. Here, we exploit the kernel trick to solve this problem because the most
useful quality of non-linear regression functions f(z) with the kernel trick is that the
optimization problem is still linear, albeit in a different set of variables (the dual space).
Although evaluating f(z) typically increases the complexity with the number of samples,
we can overcome this drawback with the circulant matrix.

Firstly, we briefly introduce the kernel trick and define relevant notation. The inputs
of a linear problem map to a non-linear feature-space φ(x) with the kernel trick and it
consists of:

(1) Expressing the solution w as a linear combination of the samples:

w =
∑

i

αiφ(xi). (5)

The variables under optimization are α, in place of w. This alternative representation α
is in the dual space and w is in the primal space;

(2) We can write the algorithm in terms of dot-products φT (x)φ(x′) = k(x, x′), which
are computed through the kernel function k. The goal of training is to find a function
f(z) = wT z and z is the test samples. We use α in the dual space instead of w in the
primal space. Therefore, the function f(z) can be written as:

f(z) = wT z =
n∑

i=1

αik(z, xi). (6)

Unfortunately, the complexity of the regression function grows with the number of sam-
ples. However, this limitation can be overcome by circulant data.

Secondly, we introduce the efficient kernel regression by the circulant data. The solution
to the kernelized version of ridge regression can be obtained from [8]

α = (K + λI)−1y, (7)

where K is the kernel matrix with elements Ki,j = k(xi, xj), I is the identity matrix and
vector y has elements yi. The solution w is implicitly represented by the vector α, whose
elements are the coefficients αi in the dual space. If K is circulant for datasets of cyclic
shifts, Equation (7) can be reduced to

α̂ =
ŷ

k̂xx + λ
, (8)

where kxx is the first row of the kernel matrix K = C (kxx), and again a hat denotes the
DFT of a vector. According to [6], we know radial basis function kernels satisfy Theorem
3.1. In this paper, we choose Gaussian kernel function because it is one of the radial basis
function kernels. The Gaussian kernel function is expressed as

k(x1, x2) = exp

(
− 1

σ2
∥x1 − x2∥2

)
. (9)

Theorem 3.1. Given circulant data (x), the corresponding kernel matrix K is circulant
if the kernel function satisfies k(x, x′) = k(Mx, Mx′), and M is any permutation matrix
[6].

4. Detection. We want to evaluate the regression function f(z) for one image patch
independently. In order to detect the object of interest, we wish to evaluate f(z) on
several image locations, for example, for several candidate patches. These patches can be
modeled by cyclic shifts.

Kz is denoted as the kernel matrix between all training samples and all candidate
patches. It is easy to verify that this kernel matrix satisfies Theorem 3.1 and it is circulant
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for Gaussian kernel because the samples and patches are cyclic shifts of base sample x
and base z respectively. Each element of Kz can be obtained by k (P i−1z, P j−1x). As
same as Section 3, we only need the first row to define the kernel matrix:

Kz = C(kxz), (10)

where kxz is the kernel correlation of x and z. According to Equation (6), the regression
function for all candidate patches can be computed with

f(z) = (Kz)T α, (11)

where f(z) is a vector which contains the detection response for all cyclic shifts of z. To
compute Equation (11) efficiently, we diagonalize it to get

f̂(z) = k̂xz · α̂. (12)

Each f(z) is a linear combination of the neighboring kernel values from kxz and it is
weighed by the learned coefficients. Intuitively, evaluating f(z) at all locations can be
seen as a spatial filtering operation over the kernel values kxz. Therefore, it can be
computed efficiently in the Fourier domain.

5. Correlation Filters for Adaptive Scale Evaluation.

5.1. Discriminative correlation filters. In this section, we briefly introduce the dis-
criminative correlation filter formulation based on the minimum output sum of squared
error (MOSSE) tracker [9]. Using a number of training samples f , these samples are
labelled with the desired correlation outputs g from the filter. The optimal correlation
filter can be obtained by minimizing the sum of squared errors:

τ =

∥∥∥∥∥
d∑

l=1

hl ∗ f l − g

∥∥∥∥∥
2

+ γ
d∑

l=1

∥hl∥2, (13)

where d denotes the dimension of feature and ∗ denotes circular correlation. Equation
(13) can be computed to

H =
ḠF∑d

k=1 F̄ kF k + γ
, (14)

where all the capital letters denote the discrete Fourier transform (DFTs) of the corre-
sponding functions.

5.2. Adaptive correlation filters. We propose an adaptive scale evaluation method
based on the correlation filters. Our method can adapt to the scale variation during the
tracking process. By learning a separate 1-dimensional correlation filter which is also
called scale filter to estimate the target scale in an image. We use variable patch sizes
around the target to extract the features of the training samples f which will be used to
update the scale filter. Denote A × B as the target size in the current frame and S × 1
as the size of the scale filter. We extract an image patch jn of size anA × anB around
the target and n ∈

{
⌊− s−1

2
⌋, . . . , ⌊ s−1

2
⌋
}
, and a represents scale factor. We compute the

correlation score y on a rectangular region by Equation (15)

y = F−1

∑d
k=1 ZkM̄k

N + γ
, (15)

where M and N are the numerator and denominator of Equation (14) and we update
them by Equation (16) and Equation (17). Z is the feature map at the predicted target
location.

Mt = (1 − θ)Mt−1 + θḠtFt, (16)
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Nt = (1 − θ)Nt−1 + θ

d∑
k=1

F̄ kF k, (17)

where t denotes the t-th frame and θ is a learning rate parameter. The algorithm of the
tracking can be seen in Table 1. c and d in Table 1 are temporary variables for Gaussian
kernel calculation.

Table 1. The framework of the algorithm

Algorithm

When the i-th frame arrives
Inputs:

Target position Pi−1 and scale Si−1

x: training image patch from Pi−1

y: regression target, Gaussian-shaped
z: test image patch from Pi−1

Output:
Estimated target position Pi based on the response and scale Si

The algorithm can be divided into translation estimate and scale estimate
1. Translation estimate

Step 1: Extract training samples x from Pi−1 and use Equation (8) to train the
classifier

Function α = train(x, y, θ, λ)
k = kernel correlation(x, x, θ)
α = fft2(y)./(fft2(k) + λ)

End
Step 2: Extract candidate samples z from the i-th frame and use Equation (12)
to obtain responses

Function responses = detect(α, x, z, θ)
k = kernel correlation(z, x, θ)
responses = real(ifft2(α. ∗ fft2(k)))

End
Function k = kernel correlation(x1, x2, θ)

c = ifft2(sum(conj(fft2(x1)). ∗ fft2(x2), 3))
d = x′

1 ∗ x1 + x′
2 ∗ x2 − 2 ∗ c

k = exp
(
− 1

σ2 ∗ abs(d)
numel(d)

)
End

Step 3: Set Pi to the target position that maximizes the responses
2. Scale estimate

Step 1: Extract a scale sample Zscale from Pi and Si−1

Step 2: Use Equation (15) to compute the scale correlation response
Step 3: Set Si to the target scale that maximizes the response

6. Experiments.

6.1. Details and parameters. λ in Equation (8) and γ in Equation (15) are fixed
to be 0.0001 and 0.01 respectively based on empirical result. Learning rate parameters
θ in Equation (16) and Equation (17) are all selected by experimental validation on a
number of sequences. We find when the learning rate parameter θ is all set to 0.025, the
performance of tracking is robust. We choose sequences containing serious scale variation
to adjust the number of scales S and scale factor a during the experiments. We find that
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when S = 33 and a = 1.02, the results of the experiments achieve the best. We use
different σ of Gaussian between 0.1 and 0.9 during the tracking process and we find when
σ is between 0.2 and 0.4, the results are stable; therefore, we choose σ = 0.2.

6.2. Dataset. Here, we present a comprehensive evaluation of the proposed method.
Results are evaluated on recent benchmark datasets which include 26 state-of-the-art
methods from [10]: CPF, LOT, IVT, ASLA, SCM, L1APG, MTT, VTD, VTS, LSK,
ORIA, DFT, KMS, SMS, VR-V, Frag, OAB, SemiT, BSBT, MIL, CT, TLD, Struck,
CSK, CXT and KCF.

6.3. Robustness evaluation. Videos in the benchmark dataset are annotated with at-
tributes, which describe the challenges that tracking algorithms will face in each sequence,
for example, illumination changes, deformation and occlusions. These attributes are used
for analyzing and characterizing the behavior of trackers in such a large dataset without
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Figure 1. The performance score of different challenging factors of each tracker
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having to diagnose each individual video. We show results for 6 attributes in Figure 1: il-
lumination variation, out-of-plane rotation, deformation, occlusion, in-plane rotation and
scale variation. Only the top 10 trackers for each attribute are displayed for clarity. Our
method performs well compared to other methods in these scenarios. Several reasons can
account for the performance of our method. Firstly, we adopt enough negative and pos-
itive samples to train the discriminative classifier during the tracking process. Secondly,
kernel trick is introduced to handle the problem of non-linear regression. Therefore, the
classifier is powerful to locate the target object. In addition, when the location of the
target is found by the classifier, we extract features around the location to learn another
scale filter which is used to deal with the serious scale variation. Through the cooperation
between the discriminative classifier and scale filter, our tracking method can overcome
different challenging situation during the tracking process. From Figure 1, we can find
that although the KCF tracker also performs well, the template of the KCF is fixed and
cannot deal with serious scale variation.

7. Conclusion. In this paper, we propose a robust tracking algorithm which exploits the
strength of circulant matrices and kernel trick with discrete Fourier transform to deal with
the regression effectively and lock on the tracked target quickly. After the target position
is established, we learn a 1-dimensional discriminative correlation filter to estimate the
target scale around the target position. Since all of the calculation can be translated into
the Fourier domain, our tracking method can arrive to hundreds of FPS and achieve real-
time object tracking. The results of numerous experiments on various challenging videos
demonstrate that the proposed tracker performs favorably against several state-of-the-art
algorithms. In our future work, we will focus on other kernel function and features to
improve the tracking performance. Furthermore, we will extend our method for real-time
tracking of multiple objects.
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