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Abstract. This paper proposes a hybrid hardware-software architecture for an eval-
uation of a neural network (NN) trained by particle swarm optimization with velocity
control (PSO CV) algorithm. In this design, the NN is implemented in hardware by Sys-
temVerilog language to maintain the testing speed of the system. The PSO CV algorithm
is implemented by NIOS II processor by C language to increase the flexibility and to re-
duce required resources of the system. Experimental results showed the advantages of the
proposed architecture concerning the speed and the required resources. In addition, the
NN trained by the PSO CV algorithm achieved better performance regarding recognition
rate and learning error than the NN trained by the standard particle swarm optimization
(SPSO) algorithm in our new architecture.
Keywords: Neural network, Particle swarm optimization, Field programmable gate
array, Velocity control, NIOS II, Hybrid hardware-software architecture

1. Introduction. An artificial neural network (NN) has recently attracted many re-
searchers. One of the most famous algorithms for training the NN is back-propagation
algorithm [1]. However, several studies in this field have mentioned the advantages of
particle swarm optimization (PSO) algorithm when compared with the back-propagation
algorithm concerning the speed and the accuracy [2, 3, 4]. The PSO algorithm is based
on the social behaviors such as birds flocking. At any given iteration, a bird in the swarm
tends to move to an optimal location based on the knowledge of this bird, and the knowl-
edge of the whole population [5, 6, 7]. A software implementation of the NN trained by
the PSO algorithm (NN-PSO) has been investigated [8, 9, 10].

Nowadays, field-programmable gate array (FPGA) has become an attractive target of
research. Because of the parallelism, an FPGA program may obtain a higher operating
speed than the software-only approach [11]. The NN-PSO has also been implemented in a
hardware-only architecture for taking advantage of the processing in the previous studies
[12, 13]. However, this hardware-only approach has the limitation of the flexibility. It is
not easy to change the program in hardware because this task requires a lot of time and
effort. In addition, the hardware implementation also costs many resources.

Several researchers have focused on a problem of premature convergence of the standard
PSO algorithm (SPSO). One approach adds repulsion function to the SPSO algorithm
[14]. The other approach uses radius r to detect whether the particle is bounded backward
[15]. Several other researchers add the mutation operations to the SPSO algorithm [16,
17, 18]. The PSO algorithm may become complex because these approaches add more
functions, more tasks to the SPSO algorithm. In our previous studies [19, 20], an improved

565



566 T. L. DANG, T. CAO AND Y. HOSHINO

version of the SPSO algorithm called PSO with velocity control (PSO CV) algorithm
was introduced. This algorithm is not complex because only velocity update function is
modified. The advantages concerning the recognition rate and the learning error of the
NN trained by PSO CV (NN-PSO CV) were observed. However, the NN-PSO CV was
only implemented on the hardware-only architecture [19] or the software-only architecture
[20].

The main contribution of this research is to create a hybrid framework for the evaluation
of the NN-PSO CV. In this architecture, the operation of the NN is accelerated by using
FPGA, and the PSO training is executed by an embedded-processor. It is easy to update
and modify this training module. The whole system is implemented in an FPGA chip
that is compact, portable, and low power consumption.

This paper is organized as follows. Section 2 describes PSO CV algorithm. Section 3
details the hardware-software architecture for NN-PSO CV. Section 4 presents our exper-
iments and our discussion. We conclude in Section 5 with several possible directions to
improve our research.

2. The NN Trained by the PSO with Velocity Control. In NN-PSO system, the
number of the weights and the biases of the NN equals the D dimensions of each particle in
the swarm. In each iteration of the training, the PSO algorithm tries to find the positions
that minimize the learning error of the NN.

In SPSO algorithm [5], the new velocity of each particle depends on the current velocity,
the current position of this particle, the best position found by this particle (x Pbest),
and the best position found by any particle in the swarm (x Gbest) as can be seen in
Equation (1). The new position of the particle is calculated by Equation (2). Gbest and
Pbest which are fitness values of position x Gbest and position x Pbest are updated by
Equation (3) and Equation (4).

vp(t + 1) = w × vp(t) + c1 × r1 (x−Pbestp(t) − x−p(t))

+ c2 × r2 (x−Gbest(t) − x−p(t))
(1)

x−p(t + 1) = x−p(t) + vp(t + 1) (2)

Pbestp(t + 1) =

{
f(p(t + 1)) if f(p(t + 1)) < Pbestp(t)

Pbestp(t) if f(p(t + 1)) > Pbestp(t)
(3)

Gbest(t + 1) = argmin
p

Pbestp(t + 1) (4)

where w is the inertia weight, r1 and r2 are the random numbers, c1 and c2 are the
cognitive coefficient and the social coefficient, and p(t) is the position of particle p at time
t.

The SPSO algorithm may stick to a local minimum. Our previous papers introduced
the PSO CV algorithm to overcome this limitation [19, 20]. The PSO CV algorithm has
the mechanism for the velocity control with three phases as illustrated in Figure 1.

(1) Swimming phase: particle moves toward to the middle position between x Gbest and
x Pbest with a very high speed. The c3 part becomes 0.

(2) Stopping phase: particle reduces the speed, and the new velocity of the particle starts
to be affected by the c3 part.

(3) Jumping phase: when the particle has a small speed, the value of the c3 part becomes
very high. The new calculated velocity will get a great value, and the particle will jump
to another area for the new swimming phase as shown in Equation (5). This equation
is the velocity update function of the PSOd CV algorithm. However, several situations
have significant dimensions and many local solutions. The PSOe CV algorithm was
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also introduced to search in the local area. The velocity update function of this
algorithm is presented in Equation (6).

vp(t + 1) = w × vp(t) + c1 × (x−Pbestp(t) − x−p(t))

+ c2 × (x−Gbest(t) − x−p(t)) +
c3 × r

(vp(t))2

(5)

vp(t + 1) = w × vp(t) + c1 × (x−Pbestp(t) − x−p(t))

+ c2 × (x−Gbest(t) − x−p(t)) +
c3 × r

e(vp(t))2

(6)
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Figure 1. Mechanism of the PSO CV algorithm [19, 20]

3. The Proposed Hardware-Software Architecture.

3.1. Partitioning methodology. In the NN-PSO system, the PSO module is only used
during the training of the NN. This component is moved to the software side and imple-
mented by C language to increase the flexibility. It is easy to modify the PSO parameters
and even change the PSO algorithm. The NN is the main component used in the test-
ing phase. This component is implemented by SystemVerilog language in hardware to
maintain the testing speed of our architecture.

The NIOS II processor developed by Altera is chosen because it provides flexibility,
high performance, low cost, and long life cycle [21]. In addition, Altera also provides
the intellectual property core (IP cores) for maximizing the performance of the system
[22, 23, 24].

3.2. The operation of the proposed system. Figure 2 demonstrates the PSO training
phase. All modules except the NN module are implemented in software. The PSO weights
and the input data are sent to the NN from the sending-data module. After finishing the
execution, the NN sends the results to the output-data module. These data are processed
by the evaluation module to calculate the new Gbest and the new Pbest. The calculation
for the Gbest and the Pbest is performed by the mean squared error function as shown
in Equation (7) as follows.

fi =
1

T

T∑
j=1

(targetj(k) − outputij(k))2 (7)

where T is the number of training samples, and target(k) and output(k) are the kth
component of the particle i in the target data and the output data of the NN.

The stopping-check module is used to test whether the stopping criteria are satisfied.
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Figure 2. The training phase Figure 3. The testing phase

Figure 4. The FPGA-based component

In the testing phase, the calculated weights from the training phase and the input data
are sent to the hardware-based NN from the sending-data module. The results of the NN
are obtained at the output-data module (Figure 3).

3.3. The FPGA-based component. The FPGA-based component consists of the NN,
a buffer in, a buffer out, a floating-point-calculation module, and a ready module (Figure
4). The connection between the FPGA-based component and the NIOS II is based on
the Avalon Memory-Mapped Interface [22]. The floating-point-calculation module imple-
ments the floating-point IP cores to reduce the design time and increase the performance
of our architecture [23]. The buffers are used to synchronize between the software-based
modules and the hardware-based modules. The buffer in receives the data from the soft-
ware side. If the buffer in is empty, the ready module will send the ready-to-receive signal
to the processor. On the other hand, if the buffer in is full, the input data will be sent to
the FPGA-based NN. The buffer out receives the data from the NN. If the buffer out is
full, the ready module will send the ready-to-send signal to the processor. The size of the
buffer in is D + NI . In this situation, D is the number of the weights and biases of the
NN or the number of the dimensions of each particle which is calculated by Equation (8).

D = (NI + 1) × NH + (NH + 1) × NH + (NH + 1) × NO (8)

where NI , NO, and NH are the numbers of the nodes in the input layer, the output layer,
and one hidden layer. Our NN has two hidden layers.
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The operation of the FPGA-based NN is controlled by a finite state machine (FSM).
The FSM of the NN is usually kept in the idle state. The FSM moves to running state
when the buffer in is full. Finishing the operation, the NN sends the output data to the
buffer out and returns to the idle state.

4. Experiments. All experiments were conducted with Cyclone V chip. Based on our
experiments and our previous studies [19, 20], a good set of parameters for the high
recognition rate of the SPSO algorithm and the PSO CV algorithm was:

1) w = 0.92, c1 = c2 = 0.3 in the SPSO algorithm.
2) w = 0.92, c1 = c2 = 0.3, c3 = 0.00001 in the PSO CV algorithm.

4.1. Experiments for evaluating of the NN-PSO CV algorithm.

4.1.1. Iris dataset. This database has 150 samples of three different flowers called iris
setosa, iris versicolour, and iris virginica. Each flower data has four attributes (sepal
length, sepal width, petal length, and petal width) [25]. Our experiments used the 4-10-3
NN which has four input nodes (corresponding to four attributes), three output nodes
(corresponding to three classes), ten nodes in one hidden layer, and two hidden layers.

Experiment 1: The database was divided randomly into two sets. The first set had a
bigger number of samples (105 samples). The second set had the remaining 45 samples.
The number of iterations (I) of all scenarios in this experiment was 60. When the first
set was used as the training data, the second set was considered as the testing data and
vice versa.

Scenario 1: This scenario focused on the significant number of the training data. In this
situation, the first set was considered as the training data and the second set was the
testing data. Figure 5 describes the reduction of the Gbest, the global minimum value of
the learning error when the number of particles (P ) was 40 particles. In this scenario, the
Gbest of the PSOd CV algorithm decreased to the lowest value (0.023) while other final
Gbest values were 0.178 (PSOe CV), and 0.180 (SPSO). The PSOd CV also obtained
a higher recognition rate (100%) than the PSOe CV and the SPSO algorithms (only
66.67%).

If P was increased to 70 particles (Figure 6), Gbest value of SPSO was 0.034, PSOe CV
was 0.0289, and PSOd CV was 0.0276. All three algorithms had 100% recognition rate.
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Figure 5. The reduction of Gbest when P = 40 particles
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Figure 6. The reduction of Gbest when P = 70 particles
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Figure 7. Gbest in scenario 2, Experiment 1 (45 training samples iris dataset)

Scenario 2: This scenario focused on the small number of the training data. The second
set was used as the training data and the first set was the testing data. The number of
particles was 70 particles (the recognition rate was 100% with this parameter in Scenario
1). As seen in Figure 7, PSOd CV still produced better Gbest (final Gbest = 0.023) than
PSOe CV and SPSO. In this situation, the recognition rate of the PSOd CV algorithm
was 92.38%.

With the cross-validation, the PSOd CV algorithm obtained the highest recognition
rate and the lowest Gbest among three algorithms not only with the high number of
training samples (105 samples) but also with the small number of the training samples
(45 samples). In addition, the high recognition rate and the low Gbest of the PSOd CV
algorithm were also observed even with the small number of the particles (P = 40).

Experiment 2: A new division of iris dataset (120 training samples, and 30 testing sam-
ples) was conducted to investigate the operation of the NN-PSO system with different
situations. Two main parameters affecting the training are the number of particles and
the number of iterations. Experiment 1 already investigated the changing of the number
of particles P . This experiment modified the number of iterations I, and kept P at P =
50. As seen in Table 1, the PSO CV algorithm obtained the high recognition rate even
with the small number of iterations (I = 100). On the other hand, the high number of
iterations was required to increase the recognition rate of the SPSO algorithm.

4.1.2. Balance-scale dataset. The experiment with balance-scale data set was conducted
to observe the operation of the NN-PSO system with another database. This dataset,
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Table 1. Experiment 2

iterations Algorithm Gbest Recognition

100
SPSO 0.168 66.67%

PSOe CV 0.008 93.33%
PSOd CV 0.008 93.33%

650
SPSO 0.092 80.00%

PSOe CV 0.008 93.33%
PSOd CV 0.008 93.33%

800
SPSO 0.043 90.00%

PSOe CV 0.008 93.33%
PSOd CV 0.008 93.33%

Table 2. Balance-scale data set

Algorithm Gbest Recognition rate
SPSO 0.119 83%

PSOe CV 0.116 83%
PSOd CV 0.114 85%

0.10

0.15

0.20

0.25

0 25 50 75 100
Number of iterations

G
be

st

Algorithm

PSOd_CV

PSOe_CV

SPSO

Figure 8. Gbest in the balance-scale dataset test

came from the psychology, has four attributes (left weight, left distance, right weight,
and right distance) and three classes (right, left, or be balanced) [25]. The 4-10-3 NN
was kept. The training data consisted of 245 samples chosen randomly. The testing data
had 100 samples selected randomly. The number of particles was 60, and the number of
iterations was 100. Experimental results in Table 2 and Figure 8 show that the PSOd CV
still obtained the best performance with this dataset.

Results with iris and balance-scale datasets once again confirmed that the PSOd CV
algorithm could be one solution to improve the accuracy of the SPSO algorithm.

4.2. Experiments for evaluating of the proposed architecture.

4.2.1. The speed. The testing speed was investigated because the FPGA-based NN is used
to maintain the testing speed. Two versions of the NN were implemented. One is the
software-based NN which was implemented by the C language in the Intel Core I3 2.4 GHz.
The other one is the hardware-based NN which was implemented by the SystemVerilog
language. To measure the time, the FPGA-based approach used the performance counter
core [24], and the Intel-based approach used the QueryPerformanceCounter() function
[26]. In the testing phase with the FPGA-based NN, the sending of the data to the NN,
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the receiving of the results from the NN, and the printing of the results to the screen were
executed by the NIOS II. Thus, the speed of the NIOS still affected the experimental
results. This speed can be modified by a phase-locked loop [24].

The first experiment was used with iris data. The parameters were similar to the
parameters of Experiment 1 when the recognition rate of the PSOd CV algorithm was
100% (70 particles, 60 iterations, 4-10-3 NN, 105 training samples, 45 testing samples).
It is necessary to test the speed of the NN with other sizes of NN. Therefore, the 2-6-4
NN was used to solve the XOR problem. The parameters for the PSO training were not
modified (70 particles, 60 iterations). The results in both scenarios suggested that our
hardware-based NN obtained a higher operating speed than the conventional software-
based NN as illustrated in Table 3. In these experiments, both Intel-based approach and
FPGA-based approach obtained 100% recognition rate.

Table 3. The testing time in second

NN size
``````````````Approach

frequency
100 MHz 115 MHz 2.4 GHz

4-10-3 Intel processor − − 0.078
Iris dataset FPGA device 0.05 0.043 −

2-6-4 Intel processor − − 0.036
XOR FPGA device 0.018 0.016 −

4.2.2. The required resources. This experiment investigated the advantage of the proposed
architecture concerning the logic utilization that is calculated from the number of the
adaptive logic modules (ALMs) in our design, and the number of ALMs available in the
Cyclone V. For comparison, the hardware-only architecture which was developed based
on our previous research [19] was also used in this experiment. As presented in Table 4,
the required resources in hardware-only approach were excessive. The 2-6-4 NN cannot be
implemented in the Cyclone V device (183% of the resources). Only the smaller NN such
as the 2-2-2 NN may be fitted (70% of the resources). On the other hand, the compilation
of the hardware-software architecture (2-6-4 NN) required only 27% of the resources.

Table 4. The logic utilization

Approach Logic utilization
2-6-4 NN hardware-only 183%
2-2-2 NN hardware-only 70%

2-6-4 NN hardware-software 27%

The reduction of the logic utilization may be explained by the using of the NIOS II
processor. In the hardware-only architecture, the PSO module implemented in FPGA
requires many resources. On the other hand, the hardware-software architecture moves
the PSO module to the NIOS II processor, and the FPGA resources reserved for this PSO
module are not used. Our proposed design addresses the problem of the limited resources.

5. Conclusions. This paper proposed the hybrid hardware-software architecture that
maintains the speed in the testing phase because the NN is still implemented in the
hardware. Experimental results showed that the speed of the NN in our architecture was
faster than the speed of the software-based NN. In addition, the proposed architecture has
the flexibility of the software-based program when the PSO training is moved to the NIOS
II processor. It is easy to change the parameters of the PSO training without recompiling
the FPGA part. Our experiments also showed the reduction of the logic utilization (the
ALMs) in the proposed architecture when compared with the hardware-only architecture.
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This paper also evaluates the operation of the NN-PSO CV in the proposed hardware-
software architecture. The experimental results demonstrated that our NN-PSO CV ob-
tained better performance than the NN-PSO in the proposed architecture.

Our future research will investigate the NN-PSO CV with more complex data sets and
bigger NNs. To reduce the resources, the PSO weights will be stored in the RAM. An
FPGA-based module will collect the weights from the RAM, and send these weights to
the NN without the need for the NIOS II processor. The connection between the NIOS II
processor and the RAM will use the direct memory access (DMA) to increase the operating
speed. Another possible avenue for the future research is to use the ARM processor that
may work in higher clock frequency than the NIOS II.
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