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Abstract. This paper is concerned with the problem of robust control of nonlinear
fractional-order economical systems in the presence of uncertainties and external distur-
bance is investigated. Fuzzy logic systems are used for estimating the unknown nonlinear
functions. Based on the fractional Lyapunov direct method and some proposed lemmas,
an adaptive fuzzy controller is designed. The proposed method can guarantee all the sig-
nals in the closed-loop systems remain bounded and the tracking errors converge to an
arbitrarily small region of the origin. Finally, an illustrative simulation result is given
to demonstrate the effectiveness of the proposed scheme.
Keywords: Fractional-order system, Lyapunov direct method, Adaptive control

1. Introduction. In the 1980s, economist Stutzer revealed the chaotic phenomena in
economic system for the first time [1], which aroused the human’s reflection on the tradi-
tional economics theory and after that the issue on nonlinear economics, chaotic economics
has become a hot topic [2-5]. The modern research has shown that economic system can
exhibit not only stable, unstable and periodic behavior but also chaotic phenomenon. In
fact, financial crisis is just a chaotic phenomenon of the economic system [6]. Moreover,
economists have noticed the fact that uncertainties in the economic development, such
as the impact of non-economic factors, and the sudden change of economy in frequency
are increasing [7]. Financial risks come from uncertainties, and therefore it has an im-
portant theoretical and practical significance by introducing uncertainties into economic
system [8]. Taking into consideration the chaotic behaviors and uncertainties in the eco-
nomic system, it is essential to investigate the chaos control strategies for economic and
financial systems in order to solve financial crisis and the related problems. The aim of
chaos control is to suppress or eliminate the chaotic behavior of the nonlinear system.
Some techniques have been proposed to control chaos in economic systems, such as time-
delayed feedback method [9], sliding mode control method [10], linear control [11], and
lag projective synchronization [12].

On the other hand, fractional calculus is a more than 300 years old topic. During
those days, it was considered that this technique is only a mathematical concept. Lately,
this technique has been introduced to physics and engineering science [13] and many real
phenomena are modeled with the fractional-order equations. Very recently, fractional
modeling has gained much attention in life science and economics [14]. One of these
models is the model proposed for financial systems in [15]. Having a memory is the aspect
that makes this model distinct from its integer-order one. Memory (i.e., a history of the
system) has a very important role in financial systems. So, the fractional-order financial
model has more extended range of applications. However, the same as the integer-order
financial models, this model shows a chaotic behavior which should be quenched. As a
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fundamental tool to analyze the stability of nonlinear systems, the Lyapunov method has
been introduced in [16]. However, how to construct the simple direct Lyapunov functions
remains an open problem [17]. The stability of fractional-order nonlinear systems by
applying the Lyapunov direct method with the same fractional-order operators is firstly
investigated in [18]. Some authors have proposed Lyapunov functions to prove the stability
of fractional-order nonlinear systems, for example, a new property for Caputo fractional
derivative which allows finding a simple Lyapunov candidate function for many fractional-
order systems is presented in [19]. However, the effects of both system uncertainties and
external noises are neglected; on the other hand, the fractional Lyapunov stability theory
is not applied to guaranteeing the stability of the overall system. To date and to the
best of our knowledge, the problem of robust control of nonlinear fractional-order systems
whose model uncertainty and external noises are unknown has not been fully investigated,
which motivates the study of this paper.

In this paper, an adaptive fuzzy control method for fractional-order nonlinear econom-
ical systems in the presence of model uncertainty and external noises is proposed. Fuzzy
logic systems are used for estimating the unknown nonlinear functions. Based on the
fractional Lyapunov direct method, an adaptive fuzzy controller is designed. Fractional
adaptation laws are proposed to update the parameters of the fuzzy systems. The pro-
posed method can guarantee all the signals in the closed-loop systems remain bounded
and the tracking errors converge to an arbitrary small region of the origin.

This paper is organized as follows. In Sections 2-4, the problem is stated and some useful
definitions and lemmas are given, and then the main results of this paper are proposed
in Section 5. Section 6 provides a numerical example to illustrate the effectiveness of our
results. Finally, Section 7 gives some concluding remarks.

2. Preliminaries. The fractional-order integrodifferential operator is the extended con-
cept of integer-order integrodifferential operator. The commonly used definitions in liter-
ature are Grunwald-Letnikov, Riemann-Liouville, and Caputo definitions. Due to taking
on the same form as integer-order differential on the initial conditions, which have well-
understood physical meanings and have more applications in engineering, in this paper,
the Caputo derivative is only considered. The Caputo fractional derivative is defined as
follows:

Dαf(t) =
1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1f (n)(τ)dτ (1)

where Γ is the Gamma function, α is the fractional order, and t is function argument.

3. System Description and Problem Formulation. Consider the following uncertain
nonlinear economical system:

Dαx = z + (y − a)x+ ∆f1(x, y, z, t) + d1(t) + u1(t)

Dαy = 1 − by − x2 + ∆f2(x, y, z, t) + d2(t) + u2(t)

Dαz = −x− cz + ∆f3(x, y, z, t) + d3(t) + u3(t)

(2)

where the three state variables x, y, z stand for the interest rate, the investment demand,
and the price index, respectively. Constant a is the saving amount, constant b is the cost
per investment, and constant c is the elasticity of demand of the commercial markets.
α ∈ (0, 1) is the order of the system, ∆fi(x, y, z, t), i = 1, 2, 3 and di(t), i = 1, 2, 3 represent
unknown model uncertainty and external disturbances of the system, respectively, and
ui(t), i = 1, 2, 3 is the control input. Denote

X = [x(t), y(t), z(t)]T

F (X) =
[
z + (y − a)x, 1 − by − x2,−x− cz

]T

D(t) = [d1(t), d2(t), d3(t)]
T
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∆F (X, t) = [∆f1(x, y, z, t),∆f2(x, y, z, t),∆f3(x, y, z, t)]
T

U(t) = [u1(t), u2(t), u3(t)]
T

Then, system (2) can be rewritten as

DαX = F (X) + ∆F (X, t) +D(t) + U(t) (3)

The main objective is to construct an adaptive fuzzy controller U(t) such that the
state vector X(t) tracks the following referenced signal with all involved signals keeping
bounded in the closed-loop system.

Xd(t) = [xd(t), yd(t), zd(t)] (4)

The tracking error vector is defined as

E(t) = Xd(t) −X(t) (5)

Thus, the dynamic of the tracking error can be written as

DαE(t) = DαXd(t) − F (X) − ∆F (X, t) −D(t) − U(t) (6)

Lemma 3.1. (see [20]). If x(t) is continuous and derivable, then

1

2
DαXT (t)PX(t) ≤ XT (t)PDαX(t) (7)

where P is an n× n positive definite constant matrix.

Lemma 3.2. (see [21]). Consider the following fractional-order system

DαY (t) ≤ −aY (t) + b (8)

then there exists a constant t0 > 0 such that for all t ∈ (t0,∞)

∥Y (t)∥ ≤ 2b

a
(9)

where Y (t) is the state variable, and a, b are two positive constants.

4. Description of the Fuzzy Logic System. The basic configuration of a fuzzy logic
system consists of a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine and
a defuzzifier. The fuzzy inference engine uses the fuzzy IF-THEN rules to perform a
mapping from an input vector X = [X1, X2, · · · , Xn]T ∈ Rn to an output ζ(X) ∈ R. The
ith fuzzy rule is written as

Rule i: if X1 is F i
1 and · · · and Xn is F i

n then ζ(X) is αi

where F i
1, F

i
2, · · · and F i

n are fuzzy sets and αi is the fuzzy singleton for the output in
the ith rule. By using the singleton fuzzifier, product inference and the center of gravity
defuzzification, the output of the fuzzy system can be expressed as follows:

ζ(X) =

∑N
j=1 αj

∏n
i=1 µF j

i
(Xi)∑N

j=1

[∏n
i=1 µF j

i
(Xi)

] = θTψ(X) (10)

where µF j
i
(Xi) is the degree of membership ofXi to F j

i , N is the number of fuzzy rules, θ =

[α1, · · · , αN ]T is the adjustable parameter vector, and ψ(X)=[p1(X), p2(X), · · · , pN(X)]T ,
where

pj(X) =

∏n
i=1 µF j

i
(Xi)∑N

j=1

[∏n
i=1 µF j

i
(Xi)

] (11)

is the fuzzy basis function. It is assumed that fuzzy basis functions are selected so that
there is always at least one active rule.
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5. Adaptive Fuzzy Controller Design. In this section, we will design an adaptive
fuzzy controller, such that not only all the signals of the closed-loop system (6) are
bounded, but also the tracking error tends to the origin asymptotically. Denote

ξ(X(t)) = DαXd(t) − F (X) − ∆F (X, t) −D(t) (12)

Then (6) can be written as

DαE(t) = ξ(X(t)) − U(t) (13)

Since the model uncertainty ∆F (X, t) and the external perturbations D(t) are unknown,
which lead to the nonlinear function ξ(X(t)) is unknown. Thus, we need to design an
adaptive fuzzy controller, precisely, we will apply the fuzzy system (10) to approximate
the unknown nonlinear functions ξ(X(t)) in the following manner:

ξ̂i(θi(t), X(t)) = θT
i (t)ψi(X(t)), i = 1, 2, · · · , n (14)

where ξi(X(t)) is the ith element of the nonlinear function ξ(X(t)). Let us define the
ideal parameters of θi as

θ∗i = arg min
θi

[sup |ξi(X(t)) − µ̂i(X(t))|] (15)

Define the parameter estimation errors and the fuzzy approximation errors as follows:

θ̃i = θi − θ∗i (16)

εi(x) = µi(X(t)) − µ̂i(θ
∗
i , X(t)) (17)

with ξ̂i(θ
∗
i , X(t)) = θ∗iψi(X(t)). We can assume that the fuzzy approximation error is

bounded for all X, i.e., |εi(X)| < ε̄i, where ε̄i is an unknown constant. Let ε = [ε1(X), · · · ,
εn(X)]T , ε̄ = [ε̄1, · · · , ε̄n]T . Then we can get |ε(X)| ≤ ε̄. From the above analysis, we
have

ξ̂(θi(t), X(t)) − ξ(X(t)) = ξ̂(θi(t), X(t)) − ξ̂(θ∗, X(t)) + ξ̂(θ∗, X(t)) − ξ(X(t))

= ξ̂(θi(t), X(t)) − ξ̂(θ∗, X(t)) − ε(X(t))

= θ̃T (t)ψ(X(t)) − ε(X(t))

(18)

Then the adaptive fuzzy controller can be constructed as

U(t) = θT (t)ψ(X(t)) + kE(t) + bsign(E(t)) (19)

where k and b are free positive constants to be designed. Substituting the proposed
controller (19) into the tracking error dynamics (13) gives

PDαe(t) = ξ(X(t)) − θT (t)ψ(X(t)) − kE(t) − bsign(E(t)) (20)

Multiplying ET (t) to both sides of (20) and applying (18) yield

ET (t)DαE(t) = − kET (t)E(t) +
n∑

i=1

Ei(t)εi(X(t))

− b

n∑
i=1

Ei(t)θ̃
T
i (t)ψi(X(t)) − b

n∑
i=1

|Ei(t)|
(21)

The fractional adaptation laws for updating the fuzzy parameters θi(t) are designed as
the following fractional-order differential equations

Dαθi(t) = γiEi(t)ψi(X(t)) − γiσiθi(t), i = 1, 2, · · · , n, (22)

where σi and γi are positive design parameters.
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Theorem 5.1. Suppose that the controller is designed as (19) and the fractional adapta-
tion laws are defined as (22). Then all signals in the closed-loop system will keep bounded,
and the tracking error will eventually be arbitrarily small if appropriate control parameters
are chosen.

Proof: Choose the following quadratic Lyapunov function

V (t) =
1

2
ET (t)E(t) +

1

2

n∑
i=1

1

γi

θ̃T
i (t)θ̃i(t) (23)

By using Lemma 3.1, we can obtain

DαV (t) ≤ ET (t)DαE(t) +
n∑

i=1

1

γi

θ̃T
i (t)Dαθ̃i(t) (24)

Noting that the Caputo derivative of a constant function is 0, we have

Dαθ̃i(t) = Dαθi(t) (25)

Thus, we have

DαV (t) ≤ ET (t)DαE(t) +
n∑

i=1

1

γi

θ̃T
i (t)Dαθi(t) (26)

Substituting (21) and the fractional adaptation laws (22) into (26), we have

DαV (t) ≤ −kET (t)E(t) − (b− ε̄)
n∑

i=1

|Ei(t)| −
n∑

i=1

σiθ̃
T
i (t)θi(t) (27)

If b is taken from (ε̄,+∞), then

DαV (t) ≤ −kET (t)E(t) −
n∑

i=1

σiθ̃
T
i (t)θi(t) (28)

Note that

−
n∑

i=1

σiθ̃
T
i (t)θ∗i ≤ 1

2

n∑
i=1

σiθ̃
T
i (t)θ̃i(t) +

1

2

n∑
i=1

σiθ
∗T
i θ∗i (29)

Thus, we have

DαV (t) ≤ −kET (t)E(t) −
n∑

i=1

σiθ̃
T
i (t)θi(t)

= −kET (t)E(t) −
n∑

i=1

σiθ̃
T
i (t)θ̃i(t) −

n∑
i=1

σiθ̃
T
i (t)θ∗i

≤ −kET (t)E(t) − 1

2

n∑
i=1

σiθ̃
T
i (t)θ̃i(t) +

1

2

n∑
i=1

σiθ
∗T
i θ∗i

≤ −kET (t)E(t) − σ

2

n∑
i=1

θ̃T
i (t)θ̃i(t) +

1

2

n∑
i=1

σiθ
∗T
i θ∗i

≤ −kET (t)E(t) − σγ

2

n∑
i=1

1

γi

θ̃T
i (t)θ̃i(t) +

1

2

n∑
i=1

σiθ
∗T
i θ∗i

≤ −k0V (t) +
1

2

n∑
i=1

σiθ
∗T
i θ∗i

(30)
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where

σ = min{σ1, σ2, · · · , σn}
γ = min{γ1, γ2, · · · , γn}
k0 = min{2k, σγ}

Applying Lemma 3.2, there exists a t0 > 0 such that

∥V (t)∥ ≤
∑n

i=1 σiθ
∗T
i θ∗i

k0

(31)

which yields that

∥E(t)∥ ≤

√
2
∑n

i=1 σiθ∗Ti θ∗i
k0

(32)

which means ∥E(t)∥ can be arbitrarily small in (t0,∞) if the parameters k and γi are
chosen large enough. Besides, it can be easily seen that all the signals in the closed-loop
system will remain bounded.

Remark 5.1. In [22], the parameter uncertainties ∆fi(x, y, z, t), i = 1, 2, · · · , n and the
external noise perturbations di(t), i = 1, 2, · · · , n are bounded.

6. Numerical Simulations. In this section, an illustrative example is presented to illus-
trate the effectiveness and applicability of the proposed adaptive fuzzy control approach
and to confirm the theoretical results. Consider the following fractional-order economic
system with model uncertainties and external disturbances [22].

Dαx = z + (y − 3)x+ ∆f1(x, y, z, t) + d1(t)

Dαy = 1 − 0.1y − x2 + ∆f2(x, y, z, t) + d2(t)

Dαz = −x− z + ∆f3(x, y, z, t) + d3(t)

(33)

In the simulation, the uncertainty term and external noise of the system are selected
as follows

∆f1(x, y, z, t) + d1(t) = −0.15 sin(2t)x+ 0.15 sin(3t)

∆f2(x, y, z, t) + d2(t) = 0.25 cos(4t)y + 0.1 cos(t)

∆f3(x, y, z, t) + d3(t) = 0.2 sin(3t)z + 0.2 sin(3t)

(34)

Numerical simulations are made with the initial value x0 = 2, y0 = −1, and z0 =
3, the fractional order α = 0.9. The referenced signal is set to be Xd(t) = [0, 0, 0]T .
Throughout the simulation, the model of the fractional-order nonlinear system (33) is fully
unknown. The proposed control methods do not need to the knowledge of the system.
The parameters of the controller are chosen as k = 1, b = 1, σ1 = σ2 = σ3 = 0.001,
γ1, γ2, γ3. The initial conditions of the fuzzy systems θ1(0), θ2(0), and θ3(0) are chosen
randomly.

The simulation results are shown in Figures 1 and 2. Figure 1 gives the system states
without control input, and Figure 2 gives the track performance of the state variables
x(t), y(t), and z(t), respectively. From the simulations results, we can see that the
theoretical results obtained in this paper are feasible to achieve good performance for
the controlled fractional order economic system. It should be pointed out that although
the theoretical result we derived in this paper is aimed at commensurate order case, in
fact, the designed controllers can also be generalized to the control of incommensurate
fractional order system.
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Figure 1. Responses of the system state without control inputs
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Figure 2. Responses of the system state with control inputs

7. Conclusions. In this paper, an adaptive fuzzy control method for fractional-order
nonlinear economical systems in the presence of model uncertainty and external noises
is proposed. Fuzzy logic systems are used for estimating the unknown nonlinear func-
tions. Based on the fractional Lyapunov direct method, an adaptive fuzzy controller is
designed. The proposed method can guarantee all the signals in the closed-loop systems
remain bounded and the tracking errors converge to an arbitrarily small region of the
origin. Lastly, an illustrative example is given to demonstrate the effectiveness of the pro-
posed results. Our future research direction is finite-time control of nonlinear economical
systems.
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