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Abstract. Redundant traffic identification (RTI) is vital to protocol-independent redun-
dant traffic elimination (RTE) since RTI is the premise of RTE based application. The
core issue of RTI is the chunk selection strategy, which makes decisions on how to divide
the packet payloads into chunks used for caching. Current chunk selection algorithms
take blocks of fixed size, which fails to deal with the problem of payloads bits shift. To
tackle this problem, an RTI algorithm based on sliding window (SW-RTI) is proposed. In
this algorithm we divide payloads into chunks of variable sizes, employ the sliding window
to search for the best dividing points and calculate the fingerprints between two adjacent
points. The dividing points are obtained by Rabin hashing method. Experimental results
show that SW-RTI, which optimizes the selections of sliding window size and average
chunk size, can enhance the stability of chunking. Also it is effective for identifying net-
work traffic redundancy.
Keywords: Network traffic analysis, Redundant traffic elimination, Redundant traffic
identification, Chunk selection strategy, Sliding window

1. Introduction. As Internet technology continues to develop, large volumes of Internet
applications (e.g., file sharing, video distributing and web interactions) are growing fast.
Due to large number of users and the long-tailed distribution of popularity of shared
resources on the web, many similar or same contents are repeatedly transferred over the
Internet, which are unnecessary and cause redundant network traffic [1-3]. The redundant
traffic is harmful to network bandwidth [4,5]. Thanks to the high performances and fast
processing abilities, network storage devices are able to identify the redundant traffic and
can even remove some redundancy. Redundant traffic elimination (RTE) is a technique
to detect and eliminate redundant blocks of data from packets at network layer [6-8]. The
RTE is aimed to improve network bandwidth usage and save energy for communication.

The pioneer work of protocol-independent RTE is the chunk selection algorithm MODP
(MODe Partition), which was proposed by Spring and Wetherall [9]. It is based on mode
operation and it selects chunks with robust fingerprints. However, its major disadvantages
are that its selection is too random and many large blocks may not be selected. Thus the
blocks selected are too sparse or too dense. Anand et al. [10] improved the MODP and
advanced a selection method called MAXP (MAXima Partition), which chooses blocks
with the largest byte value. MAXP was actually based on WINN (WINdow Numerically
partition) [11], which sets bounds on the distances of adjacent chunks and ensures that
within certain distance at least one chunk is selected. Agerwal et al. [12] proposed a
relatively faster algorithm named by SAMPLEBYTE (SAMPLE BYTE partition), which
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selects chunks with specific byte value based on lookup tables. It obtains the most re-
dundant byte through training and executes more efficient than MAXP. Nevertheless, it
cannot handle situations of dynamic changes of network packets and its sampling manner
is not predictable.

The methods mentioned before are all based on the fixed size of chunks and question
arises from the perturbations of packet payloads, where how to correctly deal with the bits
shift of payloads is a question affecting the performances of RTE. In this paper we propose
a novel chunk selection algorithm to enhance the stability of chunking. The algorithm is
based on sliding window for RTE (SW-RTI) and uses sliding window technique to divide
chunks. It increases the detection of redundancy and improves the efficiency of RTE for
highly redundant traffic.

The rest of this paper is organized as follows. Section 2 states through examples our
idea of sliding window-based RIT method. The SW-RTI algorithm is explained in detail
in Section 3 and we conduct parameters evaluations of the proposed method in Section
4. Section 5 concludes this paper.

2. Related Work. The RTI is the most important step of RTE algorithm. Usually RTI
is implemented via fingerprints computing technique to select and identify redundant
chunks [13]. Fingerprinting technique is suitable to find the redundancy within and/or
between packet contents [14]. Every chunk within a packet is calculated by hashing
method and its fingerprint is obtained. Those fingerprints are stored in a set. When
indices are constructed and searched, each candidate compares with those fingerprints.
If match exists, then the redundant chunk is claimed and its relative position in the
packet is marked and used for elimination. This means that there is no need to transfer
this chunk anymore and instead its position together with some meta-data is transferred,
which reduces packet payload and increases bandwidth efficiency. At the receiver side
when redundancy is detected the meta-data and position would be replaced by original
chunks.

Most methods implicitly define that chunks are all fixed size but when packet payloads
undergo deletions and/or additions of minor bits, they are not able to detect those re-
peated blocks in the same packets. Redundancy detection is decreased and therefore we
advance stability definition to measure the efficiency of chunking.

Definition 2.1. Suppose by a chunk selection algorithm the packet payload A is chunked
into set A = {A1, A2, . . ., An}. If small changes are conducted on the some content, the
newly obtained chunk set is A∗. The ratio of the number of the same chunks between set
A and A∗ divided by its total number of chunks is defined as stability of the chunking.

Example 2.1. Figure 1 shows the bits shift problem of payload by deletion. First for
content A there are five chunks, i.e., {A1, A2, A3, A4, A5}. When a similar content A∗

arrives but with some deletion of bits in chunk A4, then by the same chunk selection method
with fixed chunk size, only {A1, A2, A3} are to be found the same and are regarded as
redundancy. However, obviously chunk A5 is still in content A∗ and should be considered
as redundancy. Thus this stability is 3/5.

Figure 1. Bit shift problem by deletion of bits
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Figure 2. Bit shift problem by addition of bits

Example 2.2. The bit shift problem caused by addition of bits is shown in Figure 2. The
newly arrived packet A∗ is inserted by some bits in front of previous chunk A1 and by
using fixed chunk size we obtained no redundancy. However, the original chunks actually
still remain in A∗ and the stability is 0/5.

From these two examples we conclude that even small changes by addition and/or
deletion of bits can result in inefficiency of chunking. The bit shift problem challenges
chunk selection algorithm of RTI. We address this issue by using sliding window to chunk
with various chunk sizes and divide the payload into blocks with better stability.

3. SW-RTI Algorithm. Distinguished from the conventional chunking methods which
use fixed chunk size, the SW-RTI allows various chunk sizes, which means the divided
blocks differ from each other in terms of block length. Figure 3 illustrates the processing
flow of the proposed RTI, in which Rabin hash is first performed on the payload and the
window size is increased by one byte if no Rabin hash codes match. On the contrary if
there is a match for Rabin, fingerprinting is conducted on the data within this window
to judge whether the data is redundant or not. Note that the size of the window is not
fixed and it is determined by the Rabin hash to grow incrementally.

Suppose the fingerprinting algorithm is denoted by f and the window size by l, r is a
binary data with length of k. A payload data string is denoted by S = s1s2. . .sn, and a
substring of S is W with l, W = sksk+1. . .sk+l−1. If the lower k bits of f(S) equal r, then
the substring W is the last chunk of S, i.e., the last byte is regarded as the dividing point.

When searching for dividing points we use the robust hashing method [15,16], which
obeys rules as follows:

1) different hash codes imply different contents but the same hash codes do not mean
the same contents and;

Figure 3. Illustration of SW-RTI
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2) in order to keep chunk size from becoming too large the robust hashing should collide
as much as possible.

Therefore we adopt Rabin hashing to seek dividing points in SW-RTI. Suppose A stands
for a binary code with length m, A = (a1, a2, . . ., am). A polynomial A(t) is constructed
from A with degree of (m − 1), which is as follows:

A(t) = a1t
m−1 + a2t

m−2 + . . . + am (1)

in which t is treated as variable. Suppose there is another polynomial P (t) with degree k
for a binary code B, B = (b1, b2, . . . , bk) and is defined as:

P (t) = b1t
k + b2t

k−1 + . . . + bk (2)

If A(t) is divided by P (t) then the result is a polynomial with degree of (m − k − 1).
Let the fingerprint of A be f(A) and it is defined as follows:

f(A) = A(t) mod P (t) (3)

where mod operator stands for mode operation.
Rabin hashing exhibits two characteristics, i.e., 1) if f(A) does not equal f(B), then

A is distinct from B and 2) if f(A) equals f(B) then A may be the same as B or may
not. Rabin hashing satisfies the two requirements of robust hashing and therefore we
choose it as for robust hash code generating. Besides this the Rabin hashing is good
at finding dividing points. It can obtain the dividing point of next window from the
content of current window. Suppose Wi is the string of length l falling into the i-th
window, Wi = Ai, Ai+1, . . ., Ai+l−1, and Ak = (ak,1, ak,2, . . ., ak,8) is the k-th byte with
k = 1, 2, . . ., i, . . ., i + l − 1. The polynomial for Ak is Ak(t) = ak,1t

7 + ak,2t
6 + . . . + ak,8

and we have

f(Wi) = Ai(t) mod P (t)

=
(
Ai(t)t

8(l−1) + Ai+1(t)t
8(l−2) + . . . + Ai+l−1(t)

)
mod P (t)

(4)

Thus if we obtain f(Wi) then the hash for the next window Wi+1 is calculated as follows:

f(Wi+1) = Ai+1(t) mod P (t)

=
(
Ai+1(t)t

8(l−1) + Ai+2(t)t
8(l−2) + . . . + Ai+l(t)

)
mod P (t)

=
(
Wi(t)t

8 − Ai(t)t
8l + Al+1(t)

)
mod P (t)

=
(
(Wi(t) − Ai(t)) t8l + Al+1(t)

)
mod P (t)

(5)

Therefore we argue that the dividing points can be decided and it is shown in Figure 4,
where the current dividing points are tactically determined by previous dividing points.
The decision is based on the Rabin code of current candidate window. If it is equal to
coefficient r, the current window is chosen as chunk. Otherwise move forward the window
along sliding direction by one byte. Note that the parameter r is a factor which can be
set according to practical analysis.

Figure 4. Dividing points in SW-RTI
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Figure 5. Chunking in SW-RTI

Here we apply the concept of stability to analyze the SW-RTI chunking performances.
Suppose first we have payload content A chunked into {C1, C2, C3, C4, C5, C6} in Figure
5. By bits addition to chunk C4, payload A is changed into B and with our SW-RTI it is
able to detect chunks {C1, C2, C3, C5, C6}. The stability is 5/6. Similarly when chunk
C4 is broken into two chunks for payload C when added bits satisfy the Rabin hashing
and chunks that are detected redundant are {C1, C2, C3, C5, C6}. Also the stability is
5/6. For payload D bits of addition causes original chunks C3 and C4 disappear and four
redundant chunks are detected. The stability is 4/6. Thus it can be seen with SW-RTI the
stability of chunking performs well because it doest not affect the remaining redundant
chunks detection even after certain modified chunks caused by bit shift problem.

4. Performance Evaluations. We evaluate our SW-RTI and concentrate on the two
crucial parameters, i.e., the size of sliding window l and the average size of chunks r. To
avoid too large or too small chunks we follow three rules, which are 1) if the length of
packet payload is less than l then searching for dividing points stops and instead treats
the whole payload to calculate its fingerprint, 2) if too many dividing points exist then
we limit the least chunk size as m bytes and 3) if too few dividing points exist then we set
the M bytes starting from the previous point as a new chunk and calculate its fingerprint.
Note that the degree of too many or too few is defined empirically. We capture packets
on our campus network for one hour by Wireshark tool and the total size of data is about
27.5G bytes.

4.1. Effects of sliding window size. We choose three different values of l, i.e., 16 bytes,
32 bytes and 48 bytes, to compare their effects on the results of redundancy detection.
The results are shown in Table 1. As it can be seen that the value of l has little effects
on the redundancy detection. On the contrary when we choose l, we should take into
consideration the payload chunk. Smaller l results in lower correlations between chunks
and payload contents while larger l results in much more computing time for Rabin
calculations.

4.2. Effects of average chunk size. We choose the least k bits of the chunk for Rabin
hashing. Suppose the k bits are randomly distributed, then every 2k Rabin hash generates
a dividing point. Note that r equals 2k/8 bytes. In the testing we choose r by 64 bytes,
128 bytes and 256 bytes to compare their contributions on the redundancy detection. The

Table 1. Effects of sliding window size on redundancy detection

Size of Window Redundant traffic/GB Ratio of redundancy
16 bytes 9.504 34.56%
32 bytes 9.517 34.61%
48 bytes 9.509 34.58%
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Table 2. Effects of average chunk size on redundancy detection

Size of average chunk Redundant traffic/GB Ratio of redundancy
64 bytes 10.026 36.46%
128 bytes 9.792 35.61%
256 bytes 9.702 35.28%

corresponding value for k is 6, 7 and 8, respectively. The results are presented in Table
2. It is observed that the smaller the r is, the better the redundancy detection is, which
means more redundant traffic is identified. This is due to the fact that smaller average
chunk size causes more chunks, which increases the probability of blocks matching.

5. Conclusions. This paper addresses the issue of stability problem existing in redun-
dant traffic identification (RTI) and proposes a sliding window based RTI. The main
feature of SW-RTI is that it allows various lengths of chunks. SW-RTI utilizes Rabin
hash to search for the dividing points and it improves the stability of chunk selection.
Experimental results show the contributions of the size of sliding window and the average
size of chunks to the redundancy detection. By choosing optimal parameters the RTI
is more effective. In the future we will design efficient and effective redundant traffic
elimination system based on our RTI works.
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