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Abstract. In this paper, robust fuzzy tracking control for flexible air-breathing hyper-
sonic vehicles with parameter uncertainty is discussed. Considering the additive uncer-
tainties of parameters, a linear parameter varying (LPV) Takagi-Sugeno (T-S) fuzzy
model is firstly employed to approximate the uncertain hypersonic vehicles. Then, by
introducing the integral of the tracking error, the corresponding augmented system is
developed from the LPV T-S fuzzy model. Based on the approach of the linear matrix
inequality (LMI), the robust tracking controller is designed and the stability of the closed-
loop system is guaranteed. Finally, the designed controller is evaluated through the Monte
Carlo simulation and the simulation results demonstrate excellent tracking performance
with good robustness.
Keywords: Flexible air-breathing hypersonic vehicle, Parameter uncertainty, Fuzzy
control, Linear matrix inequality

1. Introduction. As a reliable and cost-efficient way for access to space, air-breathing
hypersonic vehicles (AHVs) have been investigated by many researchers in recent decades
[1]. The unique characteristics of the vehicles make the design of control systems for
air-breathing hypersonic vehicles become a challenging task [2]. Hypersonic flight usu-
ally covers the large flight envelope which implies the huge variations in environmental
and aerodynamic characteristics. The slender geometries and light structures required
for these aircrafts result in significant uncertain flexible effects. In addition, the strong
couplings also exist among propulsion, structure, aerodynamics, and control. Hence, com-
prehensive uncertainties resulting from aerodynamic parameter variations, environmental
disturbances, flexibility and the strong couplings influence the flight of FAHVs all the time.
For better description of the dynamic characteristics, a flexible AHV (FAHV) model which
includes the flexible dynamics was introduced by Bolender et al. [3]. Based on this model,
various robust control methods, such as linear and nonlinear control approaches [4-7], are
intensively considered. Although a rapid progress of control methodology for FAHVs
has been achieved, the controller design problem which should be robust to unknown
environment still needs to be further investigated.

Since Takagi and Sugeno proposed T-S fuzzy model-based controller in 1985, T-S fuzzy
control technique has become an effective control approach for nonlinear systems. To date,
the T-S fuzzy control method has been extended to the control of hypersonic vehicles [8,9].
However, the model addressed in above literature mainly focused on hypersonic vehicles
without considering model uncertainty. Therefore, it is worth further studying the fuzzy
control problem of hypersonic vehicles with uncertainties. In [10], Wu et al. regard the
model uncertainties as the external disturbance and a disturbance observer based fuzzy
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tracking controller is proposed to solve the tracking problem. However, the use of the
disturbance observer makes tracking controller more complex and not easy to implement.
Obviously, directly using uncertain system models to describe hypersonic vehicles for
controller design is more accurate and convenient. Thus, in this paper, based on the
result of analysis on the uncertainty [2], we develop a linear parameter varying (LPV)
Takagi-Sugeno (T-S) fuzzy model for approximating the FAHVs. Then, based on the
LMI method, the corresponding fuzzy controller is designed for tracking control. Finally,
Monte Carlo simulation is conducted to validate the proposed controller.

2. Problem Statement and Preliminaries. The longitudinal dynamics of the FAHV
model, derived from Lagrange’s equations and including flexibility effects, are given as
below [3]:

V̇ = (T cos α − D)/m − g sin γ (1)

ḣ = V sin γ (2)

γ̇ = (L + T sin α)/(mV ) − g cos γ/V (3)

α̇ = q − γ̇ (4)

q̇ = M/Iyy (5)

η̈i = −2ξiωiη̇i − ω2
i ηi + Ni, i = 1, 2, 3 (6)

Five rigid-body states V , h, γ, α, q, which represent the vehicle velocity, altitude, flight
path angle, angle of attack (AOA) and pitch rate respectively, and six flexible states
η = [η1, η̇1, η2, η̇2, η3, η̇3] for the flexible modes are contained in this model. The control
inputs are the fuel equivalence ratio ϕ, canard deflection δc, and elevator deflection δe,
which do not appear in (1)-(6) directly. Instead, they enter the aerodynamic forces and
moment through the thrust T , drag D, lift L, pitch moment M , and generalized forces
Ni. The forces and moments employed in the FAHVs are approximated as [3]:

T = q̄S [CT,ϕ(α)ϕ + CT (α) + Cη
T η]

D = q̄SCD (α, δe, δc, η)

L = q̄SCL (α, δe, δc, η)

M = zT T + q̄Sc̄CM(α, δe, δc, η)

Ni = q̄S
(
Nα2

i α2 + Nα
i α + N δe

i δe + N δc
i δc + N0

i + Nη
i η

)
, i = 1, 2, 3

where q̄, S, c̄ are the dynamic pressure, reference area, and mean aerodynamic chord,
respectively. The corresponding coefficients in the thrust T , drag D, lift L, pitch moment
M , and generalized forces Ni are obtained using curve-fitted approximations, which can
be expressed as

CT,ϕ(α) = Cϕα3

T α3 + Cϕα2

T α2 + Cϕα
T α + Cϕ

T

CT (α) = C3
T α3 + C2

T α2 + C1
T α + C0

T

CM(α, δe, δc, η) = Cα2

M α2 + Cα
Mα + Cδe

Mδe + Cδc
Mδc + C0

M + Cη
Mη

CL(α, δe, δc, η) = Cα
Lα + Cδe

L δe + Cδc
L δc + C0

L + Cη
Lη

CD(α, δe, δc, η) = Cα2

D α2 + Cα
Dα + C

δ2
e

D δ2
e + Cδe

D δe + C
δ2
c

D δ2
c + Cδc

D δc + C0
D + Cη

Dη

Cη
j =

[
Cη1

i , 0, Cη2
i , 0, Cη3

i , 0
]
, i = T, M, L,D

Nη
i =

[
Nη1

i , 0, Nη2
i , 0, Nη3

i , 0
]
, j = 1, 2, 3

The output to be controlled is selected as y = [V, h]. Define the velocity and altitude
tracking reference trajectories as Vr and hr, respectively. Then the control objective is to
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design a robust fuzzy controller so that velocity V and altitude h can track the reference
trajectories Vr and hr, respectively.

For LPV T-S modeling of the FAHV, some simplifications and processing of the model
are adopted. Firstly, the effects of six flexible states are neglected during the controller
design process. Then, since the variation of dynamic pressure q̄ and the uncertainty
of the pitch moment Myy are the main uncertainties which influence the flight stability
significantly [2], additive parameter uncertainties θq̄ q̄ and θMMyy are added in the vehicle
model, where θq̄ and θM are the unknown coefficients for representing the levels of different
uncertainties. Through the above simplification and processing, the uncertain nonlinear
vehicle model is rewritten as

ẋa(t) = fa(xa, θq̄, θM) + ga(xa, θq̄, θM)ua (7)

ya = Cxa (8)

with xa = [V, h, γ, α, q̄]T , ua = [ϕ, δe]
T , ya = [V, h]T ,

fa(xa, θq̄, θM)=


fa,11−g sin γ

V sin γ
fa,31−g cos γ/V

q − fa,31+g cos γ/V
fa,51

 , ga(xa, θq̄, θM)=


ga,11 ga,12

0 0
ga,31 0
−ga,31 0
ga,51 ga,52

 ,

C =

[
1 0 0 0 0
0 1 0 0 0

]
,

and

fa,11 = (1+θq) q̄S
(
CT (α) cos α−

(
Cα2

D α2+Cα
Dα+C0

D

))/
m

fa,31 = (1+θq̄) q̄S
(
Cα

Lα + C0
L+CT (α) sin α

) /
(mV )

fa,51 = (1+θM) q̄S
(
zT CT (α)+c̄

(
Cα2

M α2+Cα
Mα

))/
Iyy

ga,11 = (1+θq̄) q̄SCT,ϕ(α)/m

ga,12 = − (1+θq̄)
((

C
δ2
e

D + k2
ecC

δ2
c

D

)
δe+

(
Cδe

D +kecC
δc
D

))
ga,31 = (1+θq̄) q̄SCT,φ(α)(sin α)/(mV )

ga,51 = (1+θM) q̄SzT CT,φ(α)/Iyy

ga,52 = (1+θM) q̄Sc̄
(
Cδe

M +kecC
δc
M

) /
Iyy

3. LPV T-S Fuzzy Modeling. Based on the nonlinear vehicle model with parame-
ter uncertainties given above, the LPV T-S fuzzy model is built for the FAHV. First,
motivated by [10], transforming the equilibrium condition into zero point, we obtain:

ẋ(t) = f(x, θq̄, θM) + g(x, θq̄, θM)u (9)

y = Cx (10)

where x(t) = [x1, x2, x3, x4, x5]
T ∆

= xa − xe, y
∆
= ya − Cxe, u(t)

∆
= ua − ue, and (xe, ue)

is the equilibrium point at a certain cruising flight condition. Next, based on the T-S
fuzzy modeling method, the uncertain nonlinear model (9) and (10) can be described by
an LPV T-S fuzzy model defined by the following fuzzy rules:

Ri : IF x1 is Gk(i) and x4 is Hl(i)

THEN

{
ẋ = Ai (θq̄, θM) x + Bi (θq̄, θM) u
y = Cx

(11)

i = 1, . . . , L, k = 1, . . . , m, l = 1, . . . , n
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where Ri represents the ith fuzzy rule, and L is the total number of rules. Gk(i) and
Hl(i) are the fuzzy sets corresponding to x1, x4 in the kth and lth fuzzy implication of
the ith fuzzy rule, and m and n are the total number of fuzzy sets Gk(i), Hl(i), respec-
tively. Ai (θq̄, θM) and Bi (θq̄, θM) are the LPV system matrices which contain the un-
known coefficients θq̄, θM . An optimum method in [11] is used to calculate Ai (θq̄, θM) and
Bi (θq̄, θM). So the system matrices can be rewritten as Ai (θq̄, θM) = Ai,0+θq̄Ai,1+θMAi,2,
Bi (θq̄, θM) = Bi,0 + θq̄Bi,1 + θMBi,2.

Let Gk(i)(x1), Hl(i)(x4) be the firing level of x1, x4 in the fuzzy set Gk(i), Hl(i), respec-
tively. Then the LPV T-S fuzzy model of the system can be inferred as ẋ(t) =

L∑
i=1

hi(t) [Ai (θq̄, θM) x + Bi (θq̄, θM) u]

y = Cx
(12)

where hi(t) = h̄i(t)
/(∑L

i=1 h̄i(t)
)
, h̄i(t) = Gk(i)(x1)Hl(i)(x4).

x1, x4 are chosen as the premise variables because they are related to the flight states V
and α which are sensitive to the flight dynamics. Here, we assume that x1 ∈ [−103, 103],
x4 ∈ [−0.01, 0.01]. Hence, Z-shaped and S-shaped functions are adopted in the fuzzy sets
and the corresponding membership functions are selected in Figure 1.

Finally, by selecting the following four operating states as: [−1000, 0, 0,−0.01, 0]T ,
[−1000, 0, 0, 0.01, 0]T , [1000, 0, 0,−0.01, 0]T , [1000, 0, 0, 0.01, 0]T , the LPV T-S fuzzy model
with four rules can be obtained by the above method.

Figure 1. Definition of the membership functions of the fuzzy sets
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4. Robust Tracking Controller Design. To track a reference command ya,r
∆
= [Vr(t),

hr(t)]
T , it is desirable to introduce the integral action of the tracking error into the

controller design. After augmentation with the integral error

ς =

∫ t

0

(ya,r(t) − ya(t))dt =

∫ t

0

(yr(t) − y(t))dt (13)

where yr(t)
∆
= ya,r(t) − Cxe, the LPV T-S fuzzy model is written in the form ẋaug(t) =

L∑
i=1

hi(t)
[
Āi(θq̄, θM)xaug + B̄i(θq̄, θM)u

]
+ Gyr

y = C̄xaug

(14)

where

xaug
∆
=

[
xT , ςT

]T
, Ai (θq̄, θM) =

[
Ai(θq̄, θM) 0

−C 0

]
B̄i (θq̄, θM) =

[
Bi(θq̄, θM)

0

]
, C̄ =

[
C 0

]
, G =

[
0
I

]
Based on the parallel-distributed compensation (PDC) scheme [8], the robust fuzzy

state-feedback controller for the augmented fuzzy model is constructed as

u(t) =
L∑

i=1

hi(t)Kixaug (15)

Substituting (15) into (14), the augmented closed-loop system can be written as ẋaug(t) =
L∑

i=1

L∑
j=1

hi(t)hj(t)
[
Āi(θq̄, θM) + B̄i(θq̄, θM)Kj

]
xaug + Gyr

y = C̄xaug

(16)

Thus, the output tracking controller design problem can be transformed into the stability
problem of the closed-loop system (16) for all admissible θq̄, θM .

Theorem 4.1. For the LPV T-S fuzzy system (16), if there exists symmetric X > 0
matrices Yj, and a scalar s1 < 0 satisfying the following inequalities:

Γii − 2s1X < 0 i = 1, 2, . . . , L (17)

1

L − 1
Γii +

1

2
(Γij + Γji) < 0 1 ≤ i ̸= j ≤ L (18)

where Γij =
(
Āi,0 +

∑2
k=1 δkĀi,k

)
X +

(
B̄i,0 +

∑2
k=1 δkB̄i,k

)
Yj +X

(
Āi,0 +

∑2
k=1 δkĀi,k

)T
+

Y T
j

(
B̄i,0 +

∑2
k=1 δkB̄i,k

)T
, and [δ1, δ2] ∈

{
[δ1, δ2]

∣∣δ̄1 = θ̄q̄ or θq̄, δ2 = θ̄M or θM

}
, then the

fuzzy state-feedback controller u(t) =
∑L

i=1 hi(t)Kixaug, where Ki = YiX
−1 keeps the

system (16) stable for all admissible θq̄, θM .

Proof: Step 1: Choose V (x, θ) = xT
augPxaug as a Lyapunov candidate function, where

P > 0. Hence, system (16) is stable if inequality V̇ (xaug) < 0, ∀x ̸= 0 holds, i.e.,

L∑
i=1

L∑
j=1

hi(t)hj(t)
[
P

(
Āi (θq̄, θM) + B̄i (θq̄, θM) Kj

)
+

(
Āi (θq̄, θM) + B̄i (θq̄, θM) Kj

)T
P

]
< 0

(19)

Pre- and post-multiply inequality (19) by X = P−1 and its transpose. Then letting
Yj = KjX and applying Lemma 2 in [8], a sufficient condition is obtained for inequality
(19) as follows:

Φii < 0 i = 1, 2, . . . , L (20)
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1

L − 1
Φii +

1

2
(Φij + Φji) < 0 1 ≤ i ̸= j ≤ L (21)

where Φij =
(
Āi (θq̄, θM) X + B̄i (θq̄, θM) Yj

)
+

(
Āi (θq̄, θM) X + B̄i (θq̄, θM) Yj

)T
.

Step 2: For meeting some desired control performances, the closed-loop poles should
be located in a prescribed sub-region in the complex left half plane. Thus, motivated by
Lemma 3 in [4], we obtain that if there exists a positive symmetric matrix P satisfying

P
(
Āi (θq̄, θM)+B̄i (θq̄, θM) Ki − s1I

)
+

(
Āi (θq̄, θM)+B̄i (θq̄, θM) Ki−s1I

)T
P < 0 (22)

then all the eigenvalues of the closed-loop system Āi(θq̄, θM) + B̄i(θq̄, θM)Ki lie in the left
side of s1 in the complex left half plane. Next, by pre- and post-multiplying inequality
(22) by X = P−1 and its transpose, inequality (22) is equivalent to(

Āi (θq̄, θM) − s1I
)
X + B̄i (θq̄, θM) Yi +X

(
Āi (θq̄, θM) − s1I

)T
+Y T

i B̄T
i (θq̄, θM) < 0 (23)

where Yj = KjX.
Step 3: Note that the left sides of inequalities (20), (21) and (23) are convex functions

with respect to θq̄, θM . Thus, by using the convex principle and combining (20), (21) and
(23), we get the sufficient conditions (17) and (18) for stabilization of the system (16).

5. Simulation Results. In this section, the designed controller is evaluated under the
Monte Carlo framework. Simulations are conducted on the FAHV model with flexible
states. The tracking reference trajectories are set as a 1000 ft/s change and a 10000 ft
change in velocity and altitude channel respectively. The initial trim condition of the
FAHV is chosen as: xe = [7846.6, 85000, 0, 0.0219, 0]T , while the initial control input is
ue = [0.12, 0.12]T . By using the LPV T-S fuzzy modeling method described in Section 3,
the LPV T-S fuzzy tracking model of the FAHV can be established. Then the method
proposed in Theorem 4.1 is used to design a robust tracking controller. Let s1 = −0.15,
−0.2 ≤ θq̄ ≤ 0.2, −0.2 ≤ θM ≤ 0.2. By Theorem 4.1, the fuzzy state-feedback gains can
be obtained as (where only two control gain matrices are given for brevity).

K1 =

[
1.94 −69388.20 −7.29 −2927.60 −294.23
−0.08 532.69 0.03 42.82 6.69

1.08 −1.87
−0.04 0.005

]
K3 =

[
1.03 −36406.77 −3.81 −1555.07 −156.65
−0.05 353.63 0.024 27.78 4.13

0.57 −0.98
−0.026 0.004

]
To demonstrate the robustness of the designed controller, 200 tests are conducted with

20% random parameter uncertainties of L, T , D, M in (1)-(5). Thus, during each test, the
parameter variations are randomly chosen within |∆L| ≤ 20%, |∆T | ≤ 20%, |∆D| ≤ 20%,
|∆M | ≤ 20%, whereas the fuzzy controller (15) remains the same. The tracking results
are shown in Figure 2 which is obtained by overlapping the simulation curves of 200
times corresponding to 200 sets of uncertain parameters. It exhibits no overshoot and no
steady-state error, which suggests that the designed controller achieves good robustness.
Under 200 sets of uncertain parameters, Figure 3 presents simulation results of the control
inputs. Therefore, from the simulation results, it is concluded that the given uncertain
FAHV is stable under the proposed fuzzy state-feedback controller.

6. Conclusions. In this paper, a robust tracking control strategy is proposed for the
tracking problem of the longitudinal dynamics of the FAHV. Based on the description of
the FAHV model with parameter uncertainty, an LPV T-S fuzzy model is established.
Then, a robust fuzzy tracking controller with feedback of the state and tracking error inte-
gral has been designed by LMI approach. Simulations on the nonlinear FAHV longitudinal
model demonstrate that the designed controller achieves excellent tracking performance
with good robustness.
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Figure 2. Velocity and altitude tracking response under 200 sets of uncertainty

Figure 3. Control input signals under 200 sets of uncertainty



696 Y. LIU, Z. PU AND J. YI

In this paper, we just take the uncertainties into consideration for robust fuzzy controller
design. In the future research, we will further explore the robust fuzzy control scheme
against measurement noise.
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