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Abstract. The linear adaptive filtering algorithms fail to deal with nonlinear adaptive
filtering problems. In this paper a kernel-based adaptive filtering algorithm is proposed
to deal with nonlinear adaptive filtering problems, called kernel normalized least mean
square algorithm. By means of the principle of kernel methods, the proposed kernel-based
adaptive filtering algorithm is derived from classical normalized least mean square algo-
rithm. The kernel normalized least mean square algorithm is evaluated on two nonlinear
adaptive filtering problems: time series prediction and nonlinear channel equalization.
Simulation results demonstrate the availability and performance of the kernel normalized
least mean square algorithm.
Keywords: Adaptive filtering, Kernel methods, Kernel adaptive filtering, Time series
prediction, Nonlinear channel equalization

1. Introduction. Adaptive filtering is an important part in statistical signal processing,
which can adaptively adjust its characteristics by parameter optimization [1, 2, 3, 4].
Therefore, it has a stronger ability to solve digital signal processing problems in compari-
son to the traditional filters with the fixed parameters. Now, adaptive filtering techniques
have been widely used in a lot of signal processing areas, such as channel equalization,
system identification and noise cancellation. Generally, adaptive filtering techniques can
be classified into two types: linear filtering and nonlinear filtering. If the input-output of
a filter is described in a linear relationship way, it is a linear adaptive filter; otherwise, it is
a nonlinear adaptive filter. Least mean square (LMS) algorithm, as a member of a family
of stochastic gradient algorithms, is one of the most famous adaptive filtering algorithms.
LMS algorithm has been widely used in many signal processing areas because it has a
small computation coat and is easy to implement. In recent years, nonlinear adaptive
filtering problems in image and signal processing have received a lot of attention. How-
ever, the performances of LMS and other linear filtering algorithms are not ideal when
they are used to deal with the nonlinear filtering problems; for example, they are not able
to satisfy the requirement of these problems in terms of convergence, tracking speed and
accuracy.

Kernel methods are a novel kind of machine learning, which provide a technique that
can induce a nonlinear algorithm from the corresponding linear algorithm. Kernel meth-
ods have been widely used in pattern recognition, clustering analysis and signal processing
problems [5, 6, 7, 8, 9]. In recent years, it has received a lot of attention on how to apply
kernel methods to processing the nonlinear filtering problems. Liu et al. [10] proposed a
nonlinear adaptive filtering algorithm using kernel methods, KLMS, which was a nonlinear
version of classical least mean square algorithm. Subsequently, Pokharel et al. [11] devel-
oped a kernel least mean square algorithm with constrained growth (KLMSC). Usually,
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the nonlinear filtering algorithms induced by kernel methods are called kernel adaptive
filtering algorithms. Our motivation stays on how to induce a nonlinear filtering algorithm
from classical normalized least mean square algorithm (NLMS) via kernel methods and
discuss its application in two nonlinear adaptive filtering problems. The contribution of
the work is proposing a nonlinear filtering algorithm, called kernel normalized least mean
square algorithm (KNLMS).

The rest of this paper is organized as follows. In Section 2, the classical normalized
least mean square algorithm is reviewed, and then the proposed kernel adaptive filtering
algorithm is described in detail. Two nonlinear adaptive filtering problems are used to
demonstrate simulation results in Section 3. Finally, conclusions are drawn in Section 4.

2. Kernel Normalized Least Mean Square Algorithm. In this section, classical
normalized least mean square (NLMS) algorithm is reviewed, and then the proposed
kernel normalized least mean square (KNLMS) algorithm is described in detail.

2.1. NLMS. Similar to LMS algorithm, NLMS is also a linear filtering algorithm. For a
linear filter, its input-output is described as a linear relation. Assume that {u1, u2, . . . , uN}
is an input signal sequence, and the corresponding filter output is {y1, y2, . . . , yN}, where
N is the number of samples. NLMS algorithm minimizes the following empirical risk to
determine the optimal weights w:

min
w

Remp(w) =
N∑

i=1

(yi − w(ui)) (1)

where w is the weights of the linear filter. According to stochastic gradient approach, the
weight updating for NLMS algorithm can be described as follows: w0 = 0

en = yn − wn−1(un)
wn = wn−1 + ηnenun

(2)

where en is the priori error, and ηn is step size and can be computed by

ηn =
a

< un, un >
, 0 < a < 2 (3)

Based on Equation (2), we have after n iterations

wn =
n∑

i=1

ηieiui (4)

Thus, for a new input ũ, the corresponding output of the filter is
ỹ = wn(ũ) =

N∑
n=1

ηiei < ui, ũ >

en = yn −
N∑

n=1

ηiei < ui, ũ >, n = 1, 2, . . . , N

(5)

It can be found that the input-output relation can be expressed in an inner product form.
This is a premise that NLMS algorithm can be used to induce a nonlinear algorithm by
kernel methods.

2.2. KNLMS. Kernel methods are the known machine learning methods that provide
an efficient technique to induce the nonlinear algorithm from a linear algorithm. The
kernel technique uses a nonlinear mapping to transform input samples from input space
into a high-dimensional feature space, and then in the feature space a linear algorithm
is used to deal with the mapped data. When a linear algorithm is used, it is required
that the computations on the mapped data can be expressed in an inner product form.
Thus, inner product operation in the high-dimensional feature space can be characterized
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by a kernel function in the original input space. Because it does not need to explicitly
compute inner products of feature vectors in the high dimensional feature space and all
the calculations are carried out only in the original input space via a kernel function,
the kernel technique can avoid the computation complexity in high-dimensional feature
space. Kernel methods have been widely used in pattern recognition, such as support
vector machines, kernel clustering and kernel discriminant analysis. In this work kernel
methods are used to induce a kernel-based adaptive filtering algorithm from classical
normalized least mean square algorithm (NLMS), called kernel normalized least mean
square algorithm (KNLMS), which is a nonlinear version of classical normalized least
mean square algorithm.

Assume that {u1, u2, . . . , uN} is an input signal sequence, and the corresponding filter
output is {y1, y2, . . . , yN}, where N is the number of samples. Let ϕ be a nonlinear map-
ping, which maps samples {u1, u2, . . . , uN} in input space into a high-dimensional feature
space F , i.e., {z1, z2, . . . , zN}, where zi = ϕ(ui), i = 1, 2, . . . , N . In the high-dimensional
feature space F , classical normalized least mean square algorithm is considered to tackle
adaptive filtering problem considered. In the context of adaptive filtering, normalized
least mean square algorithm searches for the optimal weights by minimizing the following
empirical risk.

min
w

Remp(w) =
N∑

i=1

(yi − w(zi)) (6)

where w is the weights of the linear filter. In the high-dimensional feature space, classical
normalized least mean square (NLMS) algorithm is used to update the weights as follows: w0 = 0

en = yn − wn−1(zn) = yn − wn−1(ϕ(un))
wn = wn−1 + ηnenzn = wn−1 + ηnenϕ(un)

(7)

where en is the priori error, and ηn is step size and can be computed by

ηn =
a

< zn, zn >
=

a

< ϕ(un), ϕ(un) >
, 0 < a < 2 (8)

where < ·, · > denotes the inner product operation. Based on Equation (8), weights can
be iterated as follows

wn = wn−1 + ηnenϕ(un)

= wn−2 + ηn−1en−1ϕ(un−1) + ηnenϕ(un)

= wn−3 + ηn−2en−2ϕ(un−2) + ηn−1en−1ϕ(un−1) + ηnenϕ(un)

· · · · · · · · · · · ·
= w1 + η2e2ϕ(u2) + · · · + ηn−1en−1ϕ(un−1) + ηnenϕ(un)

= w0 + η1e1ϕ(u1) + η2e2ϕ(u2) + · · · + ηn−1en−1ϕ(un−1) + ηnenϕ(un)

=
n∑

i=1

ηieiϕ(ui)

Thus, we have

en = yn − wn−1(ϕ(un)) = yn −
n−1∑
i=1

ηiei < ϕ(ui), ϕ(un) > (9)

= yn −
n−1∑
i=1

ηieik(ui, un)

where k(ui, un) =< ϕ(ui), ϕ(un) > denotes the inner product in feature space F , known
as kernel function. Therefore, after N step training, the input-output relation of kernel
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normalized least mean square (KNLMS) algorithm can be described by
ỹ =

N∑
i=1

ηieik(ui, ũ)

en = yn −
n−1∑
i=1

ηieik(ui, un), n = 1, 2, . . . , N

ηn = a
k(un,un)

, n = 1, 2, . . . , N

(10)

It can be observed from Equation (10) that all computations are carried out in original
input space via kernel function. This illustrates that the computations require only inner
products (kernel function) rather than all information of a mapping ϕ. In kernel methods,
Gaussian kernel and polynomial kernel are two commonly used kernel functions, and are
given, respectively, by {

k(u, u′) = exp
(
− δ||u − u′||2

)
k(u, u′) =

(
< u, u′ > +1

)p (11)

where δ is the width parameter of Gaussian kernel, and p is the order of polynomial kernel.
However, note that kernel normalized least mean square algorithm will be degenerated into
original normalized least mean square algorithm if the Gaussian kernel is used. Therefore,
the polynomial kernel is used in kernel normalized least mean square algorithm. From
Equation (10), KNLMS is a variable step-size nonlinear adaptive filtering algorithm, so it
can be viewed as variable step-size version of KLMS algorithm.

Based on Equation (10), kernel normalized least mean square algorithm can be sum-
marized as follows.

Table 1. Kernel normalized least mean square algorithm

Input: D = {(ui, yi)|i = 1, 2, . . . , N}, //input data
Begin

/*Initialization*/
y0 = 0;
a = 0.2; //learning rate
p = 5; //the order of polynomial kernel used
n = 0;
foreach (un, yn) ∈ D do

ηn = a/k(un, un); //Compute step size

yn−1 =
n−1∑
i=1

ηieik(ui, un); //Compute output of network

en = yn − yn−1; //compute error
yn = yn−1 + ηnenk(un, un)

endfor
End.

3. Simulation Results. In this section two examples will be used to demonstrate the
performance of the proposed KNLMS algorithm: time series prediction and nonlinear
channel equalization. The simulation experiments mainly focus on the comparison of
KNLMS algorithm with kernel least mean square (KLMS) algorithm and two classical
adaptive filtering algorithms (LMS and NLMS).

3.1. Time series prediction. The first simulation example is the short-term prediction
of the Mackey Glass chaotic time series with parameter τ = 30, and the sampling period
6s. The time embedding is 10 and a segment of 500 samples is used as the training data
and another 100 as the test data. All the data is corrupted by Gaussian noise with zero
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mean and 0.04 variance. In the experiment, KLMS, LMS and NLMS are used to compare
the performance of the proposed KNLMS. Gaussian kernel with width parameter δ = 1
is used in KLMS. Polynomial kernel with the order p = 5 is used in KNLMS since the
KNLMS cannot use Gaussian kernel as stated before. For all the four algorithms, learning
rate α = 0.2 is chosen.

In the experiment, mean square error (MSE) is used as a measure to evaluate the per-
formance of the four algorithms. Table 2 provides the experimental results of the four
algorithms in terms of MSE, which are the average and the standard deviation of MSE ob-
tained by the algorithms for 50 runs. LMS and NLMS are two classical linear algorithms,
while KLMS and KNLMS are their nonlinear versions respectively. As one can observe in
Table 2, KLMS and KNLMS have lower average values and standard deviations compared
with LMS and NLMS. This illustrates that the performances of the two nonlinear filter-
ing algorithms are significantly better than that of the linear filtering algorithms, LMS
and NLMS. It can be seen that KNLMS has lower average value compared with KLMS;
however, its standard deviation is slightly higher than that of KLMS.

Figure 1 shows the learning curves of the four filtering algorithms. Compared with
LMS and NLMS, KNLMS has an obvious advantage since it has a faster convergence and
can converge to lower MSE value. Moreover, KNLMS is better than KLMS in terms of
convergence.

In order to further validate the applicability of the four algorithms, different noise
variances are used in the data: σ = 0.005, 0.02, 0.04, 0.1. Table 3 provides the comparison
results of the four algorithms under different noise variances. As presented in Table 3,

Table 2. The comparison results of the four algorithms in terms of MSE

Algorithms
Training MSE Testing MSE

average std. average std.

LMS 0.021 0.002 0.026 0.007

NLMS 0.018 0.0005 0.020 0.0012

KLMS 0.0074 0.0003 0.0069 0.0008

KNLMS 0.0056 0.00047 0.0062 0.0099
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Figure 1. Learning curves of the four algorithms
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Table 3. The MSE results of the four algorithms under different noise variances

Cases
LMS KLMS NLMS KNLMS

average std. average std. average std. average std.

Training (σ = 0.005) 0.017 5e-5 0.0050 2e-5 0.015 6e-5 0.0027 3e-5

Testing (σ = 0.005) 0.018 0.0002 0.0041 0.0001 0.016 0.0001 0.0030 0.0104

Training (σ = 0.02) 0.018 0.0002 0.0055 0.0001 0.016 0.0003 0.0035 0.0002

Testing (σ = 0.02) 0.018 0.0007 0.0046 0.0004 0.017 0.0006 0.0038 0.0103

Training (σ = 0.04) 0.021 0.002 0.0074 0.0003 0.018 0.001 0.0056 0.00047

Testing (σ = 0.04) 0.026 0.007 0.0069 0.0008 0.020 0.001 0.0062 0.0099

Training (σ = 0.1) 0.033 0.001 0.019 0.001 0.032 0.002 0.022 0.004

Testing (σ = 0.1) 0.031 0.005 0.018 0.003 0.037 0.004 0.029 0.012

KNLMS and KLMS are better than NLMS and LMS, and KNLMS has lower average
value but slightly higher standard deviation compared with KLMS.

3.2. Nonlinear channel equalization. The channel equalization problem is described
as follows. A binary sequence (s1, s2, . . . , sN) is fed into a generally nonlinear channel and
is further corrupted by additive Gaussian noise at the receiver end of the channel, and
then the signal sequence is observed as (r1, r2, . . . , rN). The aim of channel equalization
is to construct an “inverse” filter that reproduces the original signal with as low an
error rate as possible. It is easy to formulate it as a regression problem, with samples
{(rt+D, rt+D−1, . . . , rt+D−l), st}, where l is the embedding length, and D is the equalization
time lag.

The following channel model is used in the experiment: zt = st + 0.5st−1, τt = zt −
0.9z2

t +nσ, where nσ is the white Gaussian noise with a variance of σ2. Testing is finished
on a 5000-sample random test sequence. The proposed KNLMS algorithm is compared
with KLMS and two conventional algorithms, LMS and NLMS. Gaussian kernel with
width parameter δ = 1 is used in KLMS and polynomial kernel with the order p = 5
is used in KNLMS, and l = 5 and D = 2. The experimental results are listed in Table
4, where each entry consists of the average and the standard deviation for 100 repeated
independent tests. The results in Table 4 show that KNLMS slightly outperforms KLMS
in terms of the bit error rate (BER). It can be clearly observed from Table 4 that KNLMS
outperforms the conventional LMS and NLMS substantially as can be expected because
the channel is nonlinear.

Table 4. The performance comparison in NCE with different noise levels σ

Cases
LMS KLMS NLMS KNLMS

average std. average std. average std. average std.

BER (σ = 0.1) 0.162 0.014 0.020 0.012 0.155 0.013 0.018 0.001

BER (σ = 0.4) 0.177 0.012 0.058 0.008 0.152 0.018 0.056 0.190

BER (σ = 0.8) 0.218 0.012 0.130 0.010 0.203 0.111 0.128 0.007

4. Conclusions. This paper discussed a kernel-based adaptive filtering algorithm, KNL-
MS, which is a nonlinear version of classical normalized least mean square (NLMS) al-
gorithm, called kernel normalized least mean square algorithm. The KNLMS was tested
on time series prediction and nonlinear channel equalization problems to demonstrate the
availability of the proposed KNLMS algorithm by comparing it with the existing kernel-
based adaptive filtering algorithm, KLMS, and two classical normalized least mean square
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algorithms, LMS and NLMS. Experimental results indicate that the proposed KNLMS is
slightly better than KLMS and outperforms the conventional LMS and NLMS for chan-
nel equalization. Our further work is that the KNLMS is considered to solve more signal
processing problems, for example, noise cancelation.
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