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Abstract. In this paper, we define the concept of consistency degree of inconsistent
decision system, and discuss the properties. Then we state the method for improving the
consistency degree through a theorem. Finally, we design an algorithm that computes
the reduct of inconsistent decision systems by two usual reduction properties. Several
experiments are performed to demonstrate that our methods are effective to obtain high
quality reduct in inconsistent decision table.
Keywords: Attribute reduction, Inconsistent decision table, Consistency degree, Rough
set

1. Introduction. Attribute reduction is a powerful data processing tool. It plays an
essential role in numerous domains such as pattern recognition, data mining, machine
learning and decision analysis [1-4]. Rough set can be a useful tool aiming to perform
attribute reduction. The goal of attribute reduction is to find some particular subsets of
the condition attributes. The redundant attributes can be removed while preserving even
improving the classification quality. The minimum subsets of the condition attributes are
called a reduct of a decision information system, which provides the same descriptive or
classification ability as the entire set of attributes [5]. Numerous studies have been done
for finding the set of all reducts or a single reduct [5-7]. In general, these work can be cat-
egorized as the following three aspects. 1) Attribute reduction based on partition. In [8],
Miao et al. put all the definitions of relative reduct based on three different classification
properties in the Pawlak rough set model into a unified framework, which will enhance the
theoretical and logical understanding of the concept of relative reducts and lay the foun-
dation for designing heuristics algorithms for reduction. Yang et al. [9] defined a relative
discernibility relation of a condition attribute to characterize minimal elements in the dis-
cernibility matrix, and further developed two algorithms to find all reducts and one reduct
in variable precision rough sets. Luan et al. [10] proposed an attribute reduction algorithm
based on artificial fish swarm algorithm and rough set, which overcomes the difficulty that
the calculation of equivalence classes is the most time-consuming. Shu and Qian [11] pro-
posed an incremental attribute reduction algorithm for the incomplete decision systems
that some of the attributes values for an object are incomplete (missing). Meng and Shi
[12] proposed adivision algorithm for computing equivalence class for decision-theoretic
rough set models, and further constructed a heuristic function for attribute reduction
algorithms by extracting “monotonic ingredient” form decision systems. For large scale
datasets, due to the existing algorithm’s deficiency of computationally time-consuming,
Liang et al. [13] developed an accelerator for attribute reduction, which simultaneously
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reduced the size of the universe and the number of attributes at each iteration of the
process of reduction. 2) Attribute reduction based on covering. Chen et al. [14] proposed
the concept of induced cover and defined consistent and inconsistent covering decision
systems, and then designed the algorithms using discernibility matrix to compute all the
reducts. Thereafter, Wang et al. [15] improved their work in [14], and then developed a
heuristic algorithm to find a subset of attributes that approximate an optimal reduction.
James et al. [16] converted reduct problem into a set covering problem according to the
positive regions in the variable precision rough set model, and then gave a set-covering
heuristic function algorithm to compute the reduct, which can keep the positive regions
consistent after the reduction. Moreover, there still have some work based on general re-
lation decision systems. Chen et al. [17] used belief and plausibility functions to measure
lower and upper approximations in neighborhood-covering rough sets, and then charac-
terized the attribute reductions of covering information systems and decision systems by
the respective functions. Further the authors gave the concepts of the significance and
the relative significance of coverings to design algorithms for finding reducts. 3) Attribute
reduction based on general relation. Liu et al. [18] gave the concept of general relation
decision system which does not require a decision attribute set consisting of equivalence
relations. Then the attributes reduction algorithms for both consistent and inconsistent
relation decision systems have been proposed. Based on general binary relations, Wang
et al. [19] defined relation information systems, consistent relation decision systems and
relation decision systems, and developed the theorems necessary for computation of all
the reducts. Chen et al. [20] introduced three kinds of dependency measure and proved
the monotonicity, and then three types of heuristic algorithms are developed to obtain de-
cision region preservation reducts. Zhang et al. [21] introduced an α-dominance relation
based on inclusion measures, proposed a variable-precision-dominance-based rough set
model, and then established an attribute reduction approach for interval-valued decision
system.

The above only list partial achievements on attribute reduction. There are still much
relative work. These work are categorized by the reduction criteria without considering
the characteristics of decision systems. In fact, according to the characteristics of decision
systems, they can be further divided into two kinds: one is for consistent decision systems,
and the other is for inconsistent one. For the latter work, although there are many
useful results, most of which only consider how to design the algorithms to improve the
performance of reduction. Up to now, there are still few authors considering the decision
system itself. In this paper, the main contribution is to propose the concept of consistency
degree of inconsistent decision systems, and then perform attribute reduction with a given
consistency degree. By using the consistency degree, we can remove some objects of
original decision systems so as to obtain a new decision system with higher consistency,
which can assure the reduction results more reliable. Therefore, our ultimate purpose is
to perform attribute reduction, and consistency degree is only a strategy to improve the
reduction quality. Under the guidance of theory frame, the reduction not only conforms
to the preference of decision-makers, but also makes the results more reliable. Our work
can enrich the existing theories and applications of rough sets to a certain degree. It
can be used to construct the attribute importance meeting monotonicity requirements.
Therefore, they will be widely applied in many fields such as performance evaluation, and
engineering management.

The rest of the paper is structured as follows. Section 2 reviews some concepts of
rough sets and inconsistent decision system. Section 3 gives the definition of consistency
degree of inconsistent decision systems, and discusses some relevant properties, and further
presents a method of improving the consistency degree of inconsistent decision systems
through a theorem. Moreover, Section 4 presents attributes reduction algorithms, and
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analyzes the characteristics. Section 5 conducts the experiments by combining with some
UCI data. Some concluding remarks are drawn in Section 6.

2. Preliminaries. First, we recall some basic concepts related to inconsistent decision
systems in rough set theory, which can be found in [5,22].

Let U = {u1, u2, . . . , un} be a finite set of objects called the universe or a sample space.
P (U) is the power set of U .

A decision system (decision table) can be represented as S =
(
U,C

∪
D

)
. C =

{c1, c2, . . . , cm} is called condition attributes and D = {d1, d2, . . . , dt} is called a deci-
sion attribute. Each condition attribute cj has a domain of values Vj = {cj(ui)}n

i=1 and
the decision attribute has a domain of values Vd = {d(ui)}n

i=1, where cj(ui) and d(ui) are
the values that attributes cj and d take on the object ui, respectively.

Suppose R ⊆ U × U is an equivalence relation on U , that is, R satisfies reflexivity,
symmetric and transitivity. For any x ∈ U , the equivalence class of x with respect to R
is defined by [x]R = {y ∈ U | xRy}. The family of all equivalence class of R is called the
quotient set induced by R, denoted by U/R = {[x]R | x ∈ U}. For a subset A ⊆ U , the
lower and upper approximations, the position and negative regions of A are defined as
follows.

apr(A) =
{
x ∈ U | [x]R ⊑ A

}
, apr(A) =

{
x ∈ U | [x]R

∩
A ̸= ϕ

}
, POS(A) = apr(A),

NEG(A) = (apr(A))c.

Definition 2.1. Let U be a finite universe, and S =
(
U,C

∪
D

)
be a decision table.

If Rc =
∩m

i=1 ci ⊆ RD =
∩t

i=1 dt, where the sign
∩

is the intersection operation of a
family of equivalence relations. Then S =

(
U,C

∪
D

)
is called consistent; otherwise,

S =
(
U,C

∪
D

)
is called inconsistent.

3. Consistency Degree of Inconsistent Decision Systems.

3.1. Consistency degree and its properties.

Definition 3.1. For x ∈ U , let

ηmax(x) = max

(
|[x]RA

∩
D1|

|[x]RA
|

,
|[x]RA

∩
D2|

|[x]RA
|

, . . . ,
|[x]RA

∩
Dm|

|[x]RA
|

)
, (1)

CD(S) = Σηmax(x)/|U |. (2)

Then we call CD(S) the consistency degree of inconsistent decision systems.

CD(S) reflects the consistency degree of decision systems from the whole. The higher
CD(S) is, the higher the reliability of the obtained knowledge from decision systems is
with and vice versa.

Example 3.1. Given a decision table S =
(
U,C

∪
D

)
, U/RC = {X1, X2, X3, X4},

U/RD = {D1, D2, D3}, where X1 = {1, 2, 19, 20, 21}, X2 = {3}, X3 = {4-13}, X4 =
{4-18}, D1 = {1-12}, D2 = {13-17}, D3 = {18-21}.

It is easy to get CD(S) = 17
21

; aprD1 = {3}, aprD1 = {1-13, 19, 20, 21}; aprD2 = ϕ,
aprD2 = {4-18}; aprD3 = ϕ, aprD2 = {1, 2, 14-21}.

Definition 3.2. If CD(S) = 1, then S =
(
U,C

∪
D

)
is consistent, or else it is inconsis-

tent.

Lemma 3.1. S =
(
U,C

∪
D

)
is consistent if and only if CD(S) = 1.

Definition 3.3. A decision system S =
(
U,C

∪
D

)
is absolutely inconsistent iff CD(S) =

0.5.

Definition 3.3 shows it is the most difficult for knowledge acquisition when CD(S) = 0.5.
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Definition 3.4. Given a threshold β, if CD(S) ≥ β, then S =
(
U,C

∪
D

)
is called

β-consistent, or else it is called β-inconsistent.

Proposition 3.1. If S =
(
U,C

∪
D

)
is β-consistent, then S =

(
U,C

∪
D

)
is also con-

sistent at any level β1 ≤ β.

From Definition 3.4, we can improve the consistency degree of S =
(
U,C

∪
D

)
by

some methods, i.e., removing the objects which can induce the inconsistency degree lower.
Generally, we can take the two methods: the first is to remove the objects in an equivalence
class with the obviously smaller inclination to a decision class; the second is to remove all
the objects in an equivalence class with the same inclination to a decision class.

Example 3.2. Given a decision table S =
(
U,C

∪
D

)
, U/RC = {X1, X2, X3}, U/RD =

{D1, D2}, where X1 = {1, 2}, X2 = {3, 4, 5}, X3 = {6}, D1 = {1, 2, 3, 4}, D2 = {5, 6}.
Obviously, CD(S) = 5

6
, and it is an inconsistent decision table. Therefore, we can remove

object 5 (with smaller inclination to D2) to improve the consistency degree, and we can
get a new decision table S ′ =

(
U,C

∪
D

)
, U/RC = {X1, X2, X3}, U/RD = {D1, D2},

where X1 = {1, 2}, X2 = {3, 4}, X3 = {6}, D1 = {1, 2, 3, 4}, D2 = {6}, and we can get
CD(S ′) = 1.

Example 3.3. Given a decision table S =
(
U,C

∪
D

)
, U/RC = {X1, X2, X3}, U/RD =

{D1, D2}, where X1 = {1, 2}, X2 = {3, 4}, X3 = {5}, D1 = {1, 2, 3}, D2 = {4, 5}.
Obviously, CD(S) = 4

5
, and it is an inconsistent decision table. Therefore, we can remove

object 3 and 4 (with the same inclination to D1 and D2) to improve the consistency degree,
and we can get a new decision table S ′ =

(
U,C

∪
D

)
, U/RC = {X1, X2}, U/RD =

{D1, D2}, where X1 = {1, 2}, X2 = {5}, D1 = {1, 2}, D2 = {5}, and we can get CD(S ′) =
1.

3.2. Improving CD(S) of a decision table.

Theorem 3.1. For a decision table S =
(
U,C

∪
D

)
, if we remove the objects which can

induce the inconsistency degree lower according to the above mentioned methods, then
CD(S) can be improved.

Proof: Let U = {x1, x2, . . . , xn}, U/RC = {X1, X2, . . . , Xm} (m ≤ n), U/RD =
{D1, D2, . . . , Dt}. Without loss of generality, suppose

x1i1 , x2i1 , . . . , xti1 ∈ X1, x1i2 , x2i2 , . . . , xti2 ∈ X2, . . . , x1im , x2im , . . . , xtim ∈ Xm.

According to Equation (1), all ηmax(xi) are the same for any xi ∈ Xi; let them be
η1, η2, . . . , ηm respectively and suppose η1 ≤ η2 ≤ · · · ≤ ηm. Therefore, we firstly re-
move the objects in X1. In the following, we will discuss it through two aspects.

1) Removing the objects in an equivalence class with the obviously smaller inclination
to a decision class. For the original decision table S, we can get η1 = q1

t
, CD(S) =

q1+sη2+···+kηm

n
, and here, q1 is the number of the objects with a bigger inclination, i.e.,

the maximum number included in a Di. Suppose to remove m1 objects in X1, and we
can get η′

1 = q1

t−m1
, CD(S ′) = q1+sη2+···+kηm

n−m1
for the new decision table S ′. So we can get

CD(S) < CD(S ′). Similarly, we can get the same conclusion when removing the objects
in other equivalence class with a smaller inclination.

2) Removing all the objects in an equivalence class with the same inclination to a
decision class. Here we suppose 0

0
= 0. We can first remove the objects in an equivalence

class belonging to a decision class, and then remove the remained objects belonging to
another decision class. According to the idea of 1), we can get CD(S) < CD(s′) easily.

Corollary 3.1. If S =
(
U,C

∪
D

)
is inconsistent, apr(Di) is monotone increasing with

the increasing of CD(S), while apr(Di) is monotone decreasing with the increasing of
CD(s).
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The CD value plays a vital role in feature selection and attributes reduction based on
rough sets. In the following, we will explain how to improve CD. An algorithm can be
realized. Several steps are designed as follows.

Algorithm 1. Improve CD of a decision table S.
Input: A decision table S =

(
U,C

∪
D

)
and given β.

Output: A decision table S ′ =
(
U ′, C

∪
D

)
with CD(S ′) ≥ β.

Step 1: Compute the CD(S), and if CD(S) ≥ β, then end; else return to Step 2;
Step 2: For any xi ∈ U , let ξ = min(ηmax(xi)) ,
for i = 1, 2, . . . , n (|U | = n)
if ηmax(xi) = ξ, then U1 = [xi]RA

, end;
end;
D = ϕ;
Step 3: for i = 1, 2, . . . , n1 (|U1| = n1)
D = [D, d(xi)], end;
Step 4: Split D → [d1, d2, . . . , dt];
Let m1 = |d1|,m2 = |d2|, . . . , mt = |dt|,
Ranking mi, i = 1, 2, . . . , t according to decreasing sequence, suppose m1 > m2 > · · · >

mt, take out mt;
Step 5: find out xi included in dt and remove xi,
Step 6: end; get a new S ′ =

(
U ′, C

∪
D

)
.

Through Algorithm 1, the consistency degree of S =
(
U,C

∪
D

)
can be improved

according to the decision preference.

Example 3.1 (continued) If we remove the second sample, then aprD1 = {3}, aprD1 =

{1, 3-13, 19, 20, 21}, CD(S) = 17
20

; if removing the first and second samples, then aprD3 =

{19, 20, 21}, aprD3 = {14-21}, CD(S) = 17
19

. Through Example 3.1, we can verify Theo-
rem 3.1 easily.

4. A CD(S)-Based Attribute Reduction for Inconsistent Decision Systems.
Attribute reduction is a vital application of rough set theory. It is the minimal set of
condition attributes that keep some properties of a decision system unchanged. The con-
cept of reduct plays an important role in the analysis of a decision system. There are
many different definitions of relative reducts for decision systems. Some are applicable to
consistent decision systems, and others are applicable to both consistent and inconsistent
decision systems. In [8], the authors have already given three definitions of relative reducts
and they have proven that the three definitions are equivalent in consistent decision sys-
tems. However, in real applications, a large number of decision systems are inconsistent.
In the following, we first introduce two definitions of [8].

4.1. Related work.

Definition 4.1. [8] Given a decision table S =
(
U,C

∪
D

)
, a condition attribute set A ⊆

C, the generalized decision of an object x ∈ U is denoted as δ(x/A) = {Vd(y) | y ∈ [x]A}.
The set of generalized decisions of all objects in U is denoted as the general decision △(A),
that is, △(A) = (δ(x1/A), δ(x2/A), . . . , δ(xn/A)), where |U | = n.

1) Region preservation reduct
An attribute set A ⊆ C is a region preservation reduct of C with respect to D, if it

satisfies the two conditions: a) POSA(D) = POSC(D); b) for any A′ ⊆ A, POSA′(D) ̸=
POSC(D).

2) Decision preservation reduct
An attribute set A ⊆ C is a decision preservation reduct of C with respect to D, if it

satisfies the two conditions: a) △(A) = △(C); b) for any A′ ⊆ A, △(A′) ̸= △(C).
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4.2. Algorithm design for attribute reduction in inconsistent decision systems.
Attribute reduction is the minimal set of condition attributes that keep some properties of
a decision system unchanged. According to the definition of inconsistent decision systems,
we know that some rules extracted from them may not be consistent. In order to improve
the consistency degree of decision rules, we have discussed the method of revising the
original decision system. In the following, we give Algorithm 2.

Algorithm 2. CD(S)-based attribute reduction algorithm.
Input: A decision table S =

(
U,C

∪
D

)
and a given β.

Output: A reduct of S.
Step 1: Compute CD(S)
Step 2: for i = 1, 2, . . . , n,
If CD(S) < β, use Algorithm 1, and obtain S ′,
Else CD(S) ≥ β
End; return to Step 3,
Step 3: Perform reduction according to definition of region preservation reduct or

decision preservation reduct;
Step 4: output a reduct of S.

5. Experimental Analysis.

Example 5.1. Let (U,C
∪

D) be an inconsistent decision table as shown in Table 1,
U = {x1, x2, . . . , x10}, C = {C1, C2, C3, C4}, and D = {d}.

Table 1. An inconsistent decision table

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

C1 1 1 2 1 3 1 1 1 1 1
C2 1 1 1 1 1 2 2 2 2 3
C3 1 1 1 2 2 1 2 1 2 1
C4 1 1 2 2 2 3 4 3 4 3
d 1 1 1 2 2 1 2 3 3 3

In the following, we will perform reduction through four methods: 1) Region
preservation reduct (RPR); 2) Decision preservation reduct (DPR); 3) CD(S)-based RPR
(CD(S)-RPR); 4) CD(S)-based DPR (CD(S)-DPR). The results are listed as Table 2.

Table 2. Reduction results for Example 3.3

CD RPR DPR CD(S)-RPR CD(S)-DPR
0.8 1,2,4 1,2,4 1,2,4 1,2,4
0.9 1,4 1,4
1 1,4 1,4

To further show our proposed algorithm’s efficiency, we employ five datasets from UCI
Machine Learning Repository to verify the performance of our method. The datasets are
described in Table 3. In the following experiments, we still use RPR, DPR, CD(S)-RPR
and CD(S)-DPR. The results are listed as Table 4.

From Tables 2 and 4, we find that all the above methods can effectively reduce the
datasets attributes. The reduction will vary with the consistency degree of decision table.
When CD(S) = 0.8, 0.9, the reduction of CD(S)-RPR and CD(S)-DPR keep the same
with that of RPR and DPR, which is because the original dataset keeps unchangeable
(i.e., the samples cannot be removed with CD(S) = 0.8, 0.9). Therefore, our method can
effectively merge decision preference into the reduction process, which is more suitable
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Table 3. Description of data sets

No. Data sets Samples Attributes Class
1 Contraceptive 1473 9 3
2 Energy efficiency 768 8 6
3 Fertilit 100 9 2
4 Haberman’s Survival 306 3 2
5 Sampbase 4601 58 2

Table 4. Comparison of reduction results for four methods

RPR DPR
CD(S)-RPR CD(S)-DPR

CD = 0.8 CD = 0.9 CD = 1 CD = 0.8 CD = 0.9 CD = 1

Contraceptive
1,2,3
4,5,6
7,8,9

1,2,3
4,5,6
7,8,9

1,2,3
4,5,6
7,8,9

1,2,3
4,5,6
7,8,9

1,2,3
4,5,6
7,8,9

1,2,3
4,5,6
7,8,9

1,2,3
4,5,6
7,8,9

1,2,3
4,5,6
7,8,9

Energy
efficiency

6,8 6,8 6,8 6,8 6,8 6,8 6,8 6,8

Fertilit
1,2,5

9
1,2,5

9
1,2,5

9
1,2,5

9
1,2,4
6,7,9

1,2,5
9

1,2,5
9

1,2,4
6,7,9

Haberman’s
Survival

1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

Sampbase

1,10
19,25
27,42,
45,46
50,52
55,56
57

1,10
19,25
27,42,
45,46
50,52
55,56
57

1,10
19,25
27,42,
45,46
50,52
55,56
57

1,10
19,25
27,42,
45,46
50,52
55,56
57

1,10
19,21
25,26
27,31
35,42
44,45
46,48
50,52
55,56
57

1,10
19,25
27,42,
45,46
50,52
55,56
57

1,10
19,25
27,42,
45,46
50,52
55,56
57

1,10
19,21
25,26
27,31
35,42
44,45
46,48
50,52
55,56
57

for practical problems. Moreover, with the improvement of CD(S), our method can be
widely applied to designing the uncertainty measure meeting monotonicity requirements
for heuristic algorithms.

6. Conclusions. In this paper, by defining the concept of consistency degree of incon-
sistent decision system, we generalize the definition of consistent (inconsistent) decision
system. We also give some properties of consistency degree, and further propose a method
of improving the consistency degree of inconsistent decision system. Then we develop an
algorithm to perform attribute reduction with the above studies. We set up the theoreti-
cal foundation for reduction of inconsistent decision systems, which should be associated
with real application and data. In the future, constructing uncertainty measure meeting
monotonicity requirements for heuristic algorithms design will be important and interest-
ing work for different application fields.
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