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Abstract. Target tracking is widely used in various surveillance systems. In order
to deal with the difficulty of target tracking under uncertain conditions, an adaptive
probability hypothesis density (PHD) filter is presented in this paper. Employing the
beta distribution and augmented parameter in extended state space, we propose the novel
PHD filter and its particle implementation on the basis of adaptive wave gate. Simulation
results confirm the efficiency of the adaptive PHD filter.
Keywords: Target tracking, PHD filter, Cardinality, Uncertain conditions

1. Introduction. The purpose of target tracking is to estimate cardinality of targets and
related motion states from the current measurements [1]. With the rapid development of
the random finite set (RFS) theorem, the probability hypothesis density (PHD) filter has
been used in various surveillance fields [2].

Note that the probability of detection varies over time owing to the physical character-
istics of passive sensors, and the clutters randomly occur in surveillance region during the
tracking process. The uncertain detection probability and the uncertain clutter rate, as
two uncertain conditions, are seriously restricted applications of the standard PHD filter.
How to track targets under uncertain environment has become vital in practice. Firstly,
the uncertain probability of detection would lead to unstable cardinality estimates. The
work regarding target tracking based on the uncertain detection probability was proposed
in [3]. According to a Markov transition, the linear Gaussian trajectory of target was
observed, and the simulation results indicated that the proposed filter reasonably per-
formed. In [4], the PHD recursions without the knowledge of detection probability were
derived, and the closed form solutions were computed under the framework of the Gauss-
ian sum. With respect to uncertain clutter rate, it blends target dynamic characteristics
with clutter statistics, thus making it more difficult to extract actual targets from clut-
ters. In [5], a new PHD filter in augmented state space was proposed when the clutter
model and the prior knowledge were mismatching. Applying the Gaussian mixtures (GM)
method, a novel algorithm for multiple targets tracking in the case of unknown clutter
density was proposed in [6], and the simulation results validated the filter better than the
conventional PHD filter in uncertain clutter environment. Recently, in order to deal with
the uncertain detection profile, the robust cardinalized PHD (CPHD) filter was proposed
to learn non-uniform detection profile and clutter background, and the experimental re-
sults showed that it corrected for discrepancies in detection parameters [7]. However, the
implementations of the mentioned works are mostly dependent on the GM method that
can be only applicable to the linear Gaussian dynamics. With regard to the nonlinear
and non-Gaussian system, we have to apply the sequential Monte Carlo (SMC) imple-
mentation to estimate target dynamics. As known, the SMC methods are often a set
of genetic-type particle Monte Carlo methodologies to solve the filtering problem based
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on the statistical and probabilistic point of view. Therefore, an adaptive PHD filter and
its SMC implementation for target tracking under uncertain conditions are presented in
this paper. The innovations of this work can be summarized as: first, the beta distri-
bution and the augmented parameter in extended state space are employed to solve the
difficulty of target tracking under uncertain conditions; besides, the adaptive detection
gate has been also applied in the proposed filter to distinguishing the actual targets from
enormous clutters.

The remainder of this note is organized as follows. In Section 2, the preliminaries of the
standard PHD filter are briefly formulated. Section 3 proposes the adaptive PHD filter
and its SMC implementation in detail. In Section 4, the simulation results evaluate the
tracking performance of the adaptive PHD filter. We summarize this paper by providing
the future work in the last section.

2. Preliminaries. Suppose that the target state vector Xk = {x1,k, . . . , xnk,k} is in
the state space X ⊆ Rnk

and the measurement vector Zk = {z1,k, . . . , zmk,k} is in the
measurement space Z ⊆ Rmk

, and then the stochastic dynamic system at time k is
modeled as [1,2]:

xk = Fk|k−1xk−1 + vk−1 (1)

zk = hk(xk) + uk (2)

where Fk|k−1 is the state transition matrix, vk−1 is the process noise vector at time k− 1,
hk(·) denotes a deterministic mapping from xk to zk, and uk is the measurement noise
vector at time k.

As we know, the PHD filter can propagate the posterior PHD, where the inner product
of the PHD in the given state space is considered as the estimated cardinality and the
associate peaks within the region can be regarded as the estimated positions. During the
filtering process, the detection profile should be given before computing the PHD prop-
agation. However, both detection probability and clutter rate have notable uncertainty
in practice, even the prior knowledge is not completely available. As a result, the given
modeling parameters are unrealistic, which cannot satisfy these uncertain conditions.

3. The Adaptive PHD Filter. To accommodate jointly uncertain clutter rate and
uncertain detection probability, we outline a new PHD filter based on the adaptive scheme,
where clutters or false alarms are modeled by an unknown and time varying number of
clutters. Both actual targets and clutters are represented using the augmented variable, in
addition to their kinematical states, to describe the unknown and time varying probability
of detection.

3.1. Filtering principle. Assume X P = [0, 1] is the state space of uncertain probability
of detection and X ℓ = {0, 1} is the discrete space of label ℓ for actual targets (ℓ = 1) and
clutters (ℓ = 0), and then the extended state space X † can be defined as:

X † = X ∪ X P ∪ X ℓ (3)

Let fℓ(x, ρ) denote the transition density function based on the augmented value ρ ∈
X P, and then the integration in X † can be written as:∫

X †

fℓ(x, ρ)dxdρ =

∫
X∪XP

f0(x, ρ)dxdρ +

∫
X∪XP

f1(x, ρ)dxdρ (4)

Time update: Considering the uncertain probability of detection ρ1,k and the state
(xk, ρ1,k) ∈ X ∪ X P for actual targets at time k, we define the probability of survival
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pS,1,k(xk), the transition density f1,k|k−1 (xk|xk−1) fP,k|k−1 (ρ1,k|ρ1,k−1), and the birth in-
tensity γ1,k (xk, ρ1,k) respectively. Then, the predicted PHD is given by:

D1,k|k−1 (xk, ρ1,k) = γ1,k (xk, ρ1,k) +

∫ 1

0

∫ pS,1,k(xk−1)f1,k|k−1(xk|xk−1)

×fP,k|k−1(ρ1,k|ρ1,k−1)D1,k−1(ρ1,k−1,xk−1)
dxk−1dρ1,k−1

(5)
where D1,k−1 (ρ1,k−1, xk−1) is the posterior PHD for actual targets at time k − 1.

On the other hand, we have in hand the uncertain probability of detection ρ0,k and the
state (x′

k, ρ0,k) ∈ X∪X P for clutters (ℓ = 0) at time k. Similarly, the probability of survival
pS,0,k, the transition density f0,k|k−1

(
x′

k|x′
k−1

)
, and the birth intensity γ0,k (x′

k, ρ0,k) can
be defined respectively. Thus, we have the predicted PHD:

D0,k|k−1(ρ0,k) = γ0,k (ρ0,k) + pS,0,kD0,k−1(ρ0,k−1) (6)

Note that D0,k|k−1 (ρ0,k) is mainly characterized by the single dependent augment because
the false alarms have nothing with the value of clutter state x′

k.
Measurement update: To make sure the available measurements more efficient, we
introduce an adaptive round wave gate with the radius of r = εẋmaxT , where ε ≥ 1 is the
adaptive control parameter, ẋmax is the maximal velocity of the actual targets, and T is

the sampling period. When Z1,k =
{

zk

∣∣∣ ∣∣∣zk − hk

(
x̂

(m)
k

)∣∣∣ ≤ r
}

, Z1,k can be regarded as

the target-generated measurement set. Given that the available measurement set at time
k is Zk, then the measurement set for clutters can be written as Z0,k = Zk − Z1,k. Let
gk (zk|xk) and κk (zk) be likelihood functions for single target measurement and clutter
respectively, and then we have:

D1,k (xk, ρ1,k)

= D1,k|k−1 (xk, ρ1,k)

1 − ρ1,k +
∑

zk∈Z1,k

ρ1,kgk (zk|xk)⟨
D0,k|k−1, ρ0,kκk

⟩
+
⟨
D1,k|k−1, ρ1,kgk (zk|xk)

⟩

(7)

D0,k (ρ0,k)

= D0,k|k−1 (ρ0,k)

1 − ρ0,k +
∑

zk∈Z0,k

ρ0,kκk (zk)⟨
D0,k|k−1, ρ0,kκk (zk)

⟩
+
⟨
D1,k|k−1, ρ1,kgk (zk|xk)

⟩

(8)

where ⟨·, ·⟩ denotes the inner product operation.
State estimation: The estimated cardinality of actual targets and clutters can be written
as:

N̂ℓ,k = ⟨Dℓ,k (xk, ρℓ,k) , 1⟩ (9)

Further, the mean number of clutters is estimated as:

λ̂k = ⟨D0,k (ρ0,k) , ρ0,k⟩ (10)

Finally, the target state estimates are achieved using the k-means clustering method which

iteratively attempts to find N̂1,k clusters. Suppose that x̂
(m)
k is the center of each cluster,

and then the target states at time k can be estimated by
{

x̂
(m)
k

}N̂1,k

m=1
.

3.2. Particle implementation. According to the mentioned filtering frame of the adap-
tive PHD filter, the related SMC implementation is derived in this subsection.
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Prediction: At time k − 1, the posterior PHDs of actual targets and clutters can be

approximated with the weighted particle set
{

x
(i)
k−1, w

(i)
ℓ,k−1

}Lℓ,k−1

i=1
:

D1,k−1(xk−1, ρ1,k−1) =

L1,k−1∑
i=1

w
(i)
1,k−1βu1,k−1,v1,k−1

(ρ1,k−1)δ
(
xk−1 − x

(i)
k−1

)
(11)

D0,k−1(ρ0,k−1) =

L0,k−1∑
i=1

w
(i)
0,k−1βu0,k−1,v0,k−1

(ρ0,k−1) (12)

where Lℓ,k−1 is the required number of particles, βuℓ,k−1,vℓ,k−1
(ρℓ,k−1) is the beta distribu-

tion on the variable ρℓ,k−1 at time k − 1, and the distribution’s shape parameters meet
uℓ,k−1, vℓ,k−1 > 0 [3,7].
Time update: At time k, two time-predicted PHDs can be given by:

D1,k|k−1(xk, ρ1,k) =

L1,k|k−1∑
i=1

w
(i)
1,k|k−1βu1,k|k−1,v1,k|k−1

(ρ1,k)δ
(
xk − x

(i)
k|k−1

)
(13)

D0,k|k−1(ρ0,k) =

L0,k|k−1∑
i=1

w
(i)
0,k|k−1βu0,k|k−1,v0,k|k−1

(ρ0,k) (14)

where the beta distribution can be written as:

βuℓ,k|k−1,vℓ,k|k−1
(ρℓ,k−1) =

∫ 1

0

fP,k|k−1 (ρℓ,k|ρℓ,k−1)βuℓ,k−1,vℓ,k−1
(ρℓ,k−1) dρℓ,k−1 (15)

Especially, the shape parameters and the associate variance are defined as:

u
(i)
ℓ,k|k−1 =

u
(i)
ℓ,k−1

u
(i)
ℓ,k−1 + v

(i)
ℓ,k−1

 u
(i)
ℓ,k−1v

(i)
ℓ,k−1(

σ
(i)
ℓ,k|k−1

)2 (
u

(i)
ℓ,k−1 + v

(i)
ℓ,k−1

)2 − 1

 (16)

v
(i)
ℓ,k|k−1 =

v
(i)
ℓ,k−1

u
(i)
ℓ,k−1 + v

(i)
ℓ,k−1

 u
(i)
ℓ,k−1v

(i)
ℓ,k−1(

σ
(i)
ℓ,k|k−1

)2 (
u

(i)
ℓ,k−1 + v

(i)
ℓ,k−1

)2 − 1

 (17)

(
σ

(i)
ℓ,k|k−1

)2

=

(
1

u
(i)
ℓ,k−1 + v

(i)
ℓ,k−1

+ ε

)
u

(i)
ℓ,k−1v

(i)
ℓ,k−1(

u
(i)
ℓ,k−1 + v

(i)
ℓ,k−1

)(
u

(i)
ℓ,k−1 + v

(i)
ℓ,k−1 + 1

) (18)

where the threshold ε ∈ [0, 1] can be utilized to adjust the value of
(
σ

(i)
ℓ,k|k−1

)2

.

Measurement update: At time k, the measurement-updated PHDs can be computed
based on the adaptive measurement set Zℓ,k:

D1,k(xk, ρ1,k) =

L1,k|k−1∑
i=1

(
w

(i)
1,U,kβu1,k|k−1,v1,k|k−1

(ρ1,k)δ
(
xk − x

(i)
k|k−1

)
+
∑

zk∈Z1,k

w
(i)
1,D,k(zk)βu1,k|k−1,v1,k|k−1

(ρ1,k)δ
(
xk − x

(i)
k|k−1

)) (19)

D0,k(ρ0,k) =

L0,k|k−1∑
i=1

w
(i)
0,U,kβu0,k|k−1,v0,k|k−1

(ρ0,k) +
∑

zk∈Z0,k

w
(i)
0,D,k(zk)βu0,k|k−1,v0,k|k−1

(ρ0,k)


(20)
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Considering the probability generating function B(·, ·) of the beta distribution, we can
obtain the measurement-updated weights for undetected and detected components:

w
(i)
ℓ,U,k =

B
(
u

(i)
ℓ,k|k−1, v

(i)
ℓ,k|k−1 + 1

)
B
(
u

(i)
ℓ,k|k−1, v

(i)
ℓ,k|k−1

) w
(i)
ℓ,k|k−1

1∑
ℓ=0

Lℓ,k|k−1∑
i=1

w
(i)
ℓ,k|k−1

(21)

w
(i)
ℓ,D,k (zk)

=

B
(
u

(i)
ℓ,k|k−1 + 1, v

(i)
ℓ,k|k−1

)
B
(
u

(i)
ℓ,k|k−1, v

(i)
ℓ,k|k−1

) κk (zk)

︸ ︷︷ ︸
ℓ=0

+
B
(
u

(i)
ℓ,k|k−1 + 1, v

(i)
ℓ,k|k−1

)
B
(
u

(i)
ℓ,k|k−1, v

(i)
ℓ,k|k−1

) gk (zk|xk)

︸ ︷︷ ︸
ℓ=1

Lℓ,k|k−1∑
ℓ=0,i=1

u
(i)
ℓ,k|k−1

u
(i)
ℓ,k|k−1 + v

(i)
ℓ,k|k−1

κk (zk) w
(i)
ℓ,k|k−1 +

Lℓ,k|k−1∑
ℓ=1,i=1

u
(i)
ℓ,k|k−1

u
(i)
ℓ,k|k−1 + v

(i)
ℓ,k|k−1

gk (zk|xk) w
(i)
ℓ,k|k−1

w
(i)
ℓ,k|k−1

(22)
State estimation: To solve the problems of particle degeneracy, we resample and get

a new weighted particle set
{

x
(i)
k , w

(i)
ℓ,k

}Lℓ,k

i=1
. Then, the estimated cardinality of actual

targets and clutters can be written as:

N̂ℓ,k =

Lℓ,k∑
i=1

w
(i)
ℓ,k

 (23)

where [·] denotes the integer operation. Further, the mean number of clutters is estimated
as:

λ̂k =

Lℓ,k∑
ℓ=0,i=1

u
(i)
ℓ,k|k−1

u
(i)
ℓ,k|k−1 + v

(i)
ℓ,k|k−1

w
(i)
ℓ,k (24)

Finally, the estimated state of actual targets
{

x̂
(m)
k

}N̂1,k

m=1
can be obtained.

4. Simulation Results and Analyses. We use a typical simulation to compare the
adaptive PHD filter with the standard PHD filter under 500 Monte Carlo runs. Our
experimental environment was: IntelTM CoreTM i5, RAM 4 GB, WindowsTM 7, and
MATLABTM V8.0. In the simulation experiment, four targets (T1∼T4) randomly move
with the constant velocity (CV) motion in the half-disc surveillance region [−2000, 2000]×
[0, 2000] m2, where the initial positions are (1000, 1500) m, (250, 750) m, (−1500, 250) m,
and (−250, 1000) m respectively. Their velocities are (−20,−15) m/s, (40,−25) m/s,
(45, 45) m/s, and (40, 10) m/s. Especially, the surveillance time is 50 s and the sampling
period is 1 s. The optimal sub-pattern assignment (OSPA) distance is used to evaluate
tracking performance over the standard PHD filter with the given clutter number of 10
and detection probability of 95%.

Figure 1 shows the true target tracks and measurements. Note that four targets move
in cluttered region during their motion cycles marked in this figure. As expected, the
trajectories are straight lines that represent the CV motion state. It is also obvious that
the measurements become more concentrated around the passive sensor located on the
original point (0, 0) m.

Figures 2 and 3 plot the x and y positions of true tracks, measurements and two filter
estimates versus time, where “◦” and “•”denote the position estimates from the adaptive
PHD filter and the standard PHD filter respectively, “−” and “×” denote the true tracks
and measurements. As seen, the position estimates of two filters make a steady approach
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Figure 1. Target tracks and measurements

Figure 2. Position estimates in x position

Figure 3. Position estimates in y position

to the true target positions. However, the standard PHD filter erroneously estimates the
positions of clutter-generated measurements. Especially, it gives the unstable position
estimates on the 15th s, whereas the adaptive PHD filter boosts estimation accuracy.

Figure 4 shows the cardinality estimates of two filters. It can be seen the standard
PHD filter exaggerates the cardinality estimates during the surveillance time owing to
the inherent defects. It mistakes a clutter for actual target on the 15th s. As a result,
the cardinality of targets is inevitably under-estimated. For comparison, the adaptive
PHD filter adheres to its confidence in the cardinality estimates with the adaptive scheme.
Moreover, setting the adaptive wave gate, we distinguish the actual targets from enormous
clutters.

Figure 5 demonstrates the OSPA distance of two filters under consideration. We can
see that at the time of intensity peaks in this figure, the adaptive PHD filter achieves the
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Figure 4. Cardinality estimates

Figure 5. OSPA distance

lower distance error as a direct result of always approaching the true cardinality. Further
analyses indicate although the total OSPA distances of two filters are approximately
equivalent, the adaptive PHD filter has more advantages on cardinality component.

Finally, we evaluate the overall performance of the adaptive PHD filter, and then the
estimated clutter rate is 9.72 with the detection probability of 94.15%. Compared with the
existing PHD filters, the proposed filter can adaptively complete the task of multi-target
tracking with promising performance in the environment of both uncertain detection
probability and uncertain clutter rate, which is more applicable for practical applications.

5. Conclusions. This paper discusses an adaptive PHD filter under the uncertain con-
ditions. Employing the beta distribution and augmented parameter in extended state
space, we propose the filtering principle and the SMC implementation. According to the
adaptive wave gate, the available measurements are identified for the actual targets and
clutters. Simulation results further confirm the tracking performance of the adaptive PHD
filter. In the future, we plan to reduce the computational complexity of this filter.
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