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Abstract. Received signal strengthen (RSS) measurements are decayed with the in-
creasing of propagation distance between the transmitter and the receiver. RSS mea-
surements are affected by path loss exponent (PLE) which is related with environment
factors. However, the obtaining of the PLE requires a lot of manual labors and material
resources by experiment methods. Based on the log decay model with RSS measurements,
a linear estimator for RSS-based source localization is proposed when the PLE is unavail-
able. By analyzing the impacts of PLE on the positioning, the estimation approach for
coarse source position is put forward. Then the estimated position is refined iteratively by
availing the reciprocal constraint relation. The simulations show that the designed itera-
tive positioning algorithm is convergent and the positioning results maintain the stability
basically when the iterative times is larger than two. The positioning accuracy of the
proposed algorithm is very close to the Cramer-Rao low bound (CRLB) under the given
noises conditions.
Keywords: Wireless sensor networks, Localization, Received signal strength, Path loss
exponent

1. Introduction. Localization techniques play a critical role in most of wireless sensor
network (WSN) applications such as coverage calculation, event detection, object tracking,
and location aware routing [1, 2, 3]. In such applications, sensor nodes are categorized
into anchor nodes and source nodes. The main difference between them is that the anchor
nodes know their locations, for instance with the help of GPS or labor survey, whereas they
are unknown for the source nodes. A localization scheme tries to localize the source nodes
using the information extracted from the signaling between the anchor nodes and source
nodes. The information can manifest itself in the form of time of arrival (ToA) [4, 5], time
differential of arrival (TDoA) [6] and received signal strength (RSS) [7]. Among them,
RSS-based localization schemes are the most prevalent one due to easier implementation
and less complexity. In this method, the distance between the anchor nodes and source
nodes is estimated using a signal propagation model.

To estimate the source location, some algorithms including maximum likelihood (ML),
semidefinite programming (SDP) method [8] and linear estimator are proposed for source
localization [9, 10]. The ML estimator is always solved by the numerical method which
requires initial solution to ensure the convergence. When the selected initial solution is far
from the actual, it will be trapped in the local optimum. To overcome the shortcoming of
the ML estimator, the SDP and linear estimator are proposed to obtain the robust source
location estimates. By relaxing the nonconvex optimization into convex problem, the SDP
method provides robust solution and improve the performance in the condition of larger
noises. However, the complexity of SDP is high. The accuracy performance of SDP cannot
achieve the optimal CRLB due to the relaxation. The linear estimator represents the
source location estimates as closed-form solution by converting the nonlinear optimization
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function into linear model. The complexity of the linear estimator is much lower than
that of SDP method.

RSS measurements decay with the increasing of the propagation distance and are re-
lated to the path loss exponent (PLE) when using the log decay model [11, 12]. Most
researches focused on the localization model with known PLE. However, in the actual ap-
plications, the costs of the labor and material resource are immense for obtaining the PLE
by experiments. Furthermore, the PLE will be fluctuated with the change of environment
factors. In [13] an estimation method of source location is proposed by considering the
unknown PLE. The proposed method derives the optimal source location with the equal
step of PLE with iterative method, so the complexity of the algorithm is high. By con-
sidering the uncertainty of the PLE, in [14] a two-step weighted least squares estimator
is proposed to avoid the search process.

Motivated by the above, we design a linear estimator specifically for the RSS-based
localization problems. When considering the PLE as unavailable, we derive a nonconvex
estimator that approximates the ML estimator but has no logarithm in the residual. Then,
a linear estimator is proposed to obtain the initial coarse solution by using the Taylor
approximation. To further improve the estimation performance, an iterative refinement
technique is designed by using the linear method. The corresponding Cramér-Rao lower
bounds (CRLBs) for this problem are derived as performance benchmarks. In this paper
a linear estimator is proposed for RSS-based localization when the PLE is assumed to be
unknown. By converting the nonlinear optimization problem into the linear equations by
Taylor approximation, the linear estimator provides a closed-form solution and avoids the
initialization of the ML estimator. To improve the accuracy performance of the proposed
method, an iterative refinement technique is designed according to the weighted least
square (WLS) method.

The rest of this paper is structured as follows. Section 2 presents the problem specifi-
cation by considering PLE as unknown. Section 3 derives the CRLB of source location
estimation by considering the unknown PLE. Section 4 in detail describes the proposed
linear estimator and iterative refinement. Section 5 analyzes the simulation results. The
conclusion is represented in Section 6. This paper contains a number of symbols. Fol-
lowing the convention, we represent the matrices as bold case letters. If we denote the
matrix as (∗), (∗)−1 represents matrix inverse. [A]i,j denotes the element at the ith row
and the jth column of matrix A.

2. Problem Specification. Assuming in two-dimensional plane there are anchor nodes
with known positions which are denoted as xi = [xi yi]

T , i = 1, 2, . . . , N . The anchor
nodes are used to derive the position of the source node which is denoted as x = [x y]T .
The RSS measurements received by anchor node i are denoted by pi. Assuming that the
RSS obeys the logarithmic decay model [12, 14], we can obtain that

pi = p0 − 10βlog10di + εi (1)

where i = 1, 2, . . . , N , εi represents the noise which conforms to the Gaussian distribution
with zero mean and variance δ2

i . di is the measurement distance between the anchor node
i and the source node. p0 represents the transmit power of the source node at the 1 m
reference point and can be obtained by the experiments or setting the transmit power
of the source node. β is called as path loss exponent (PLE) and varied from 1 to 5.
Typically β is equal to 2 in the free space circumstance. In most applications, PLE β can
be estimated with the experiments in a prior. However, the PLE is fluctuated with the
change of environment factors including temperature, humidity and propagation medium.
The experiment to obtain the value of β requires a plenty of labor and material resource.
So we consider the PLE as unavailable in the proposed RSS-based localization model.
When the transmit power p0 is assumed to be known and the PLE is unknown, the well
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known maximum likelihood (ML) estimator is written as

min
x,β

N∑
i

1

δ2
i

(pi − p0 + 10βlog10di)
2 (2)

where di = ∥xi − x∥, pi is the observation value, and i = 1, 2, . . . , N . The solution to ML
estimator is always solved by the numerical calculation which requires an initial point.
When the initial point is enough close to the actual solution, the positioning results will be
trapped in the local optimum. So a linear estimator is proposed to avoid the shortcoming
of numerical calculation.

To overcome the shortcoming of the ML estimator and fasten the iterative calculation,
it is required that the initial point is close to the true solution as possible. Generally,
the PLE β is varied from 1 to 5. It is observed that the impact of PLE on the position
result is finite when the PLE β is slightly larger than the actual value. Therefore, we set
the PLE as a given value which is larger than the true. Thus, an initial coarse solution
for source location is derived with the linear estimator. The final solution to the source
location is represented as closed-form with an iterative optimization.

3. CRLB for Location Estimation. The CRLB defines a lower bound on the variance
of any unbiased estimator and is employed as a benchmark for evaluating the performance
of estimators. As the PLE β is assumed to be unknown, an unknown vector is denoted
as θ = [xT β]T . The CRLBs of the unknown parameters are the diagonal elements of
the inverse of the Fisher information matrix (FIM). Here when the PLE β is unknown,
the FIM is denoted by F, which is also written as

F = −∂2 ln P (p|x)

∂θT ∂θ
(3)

where

P (p|x) =
N∏

i=1

1√
2πδi

exp

{
−(pi − p0 + 10βlog10di)

2

2δ2
i

}
(4)

Substituting (4) in (3), then (3) is rewritten as

F =

[
Fx U
UT V

]
(5)

where

Fx =


∂2 ln P (p|x)

∂x2

∂2 ln P (p|x)

∂x∂y

∂2 ln P (p|x)

∂y∂x

∂2 ln P (p|x)

∂y2

 (6)

(6) is further rewritten as

Fx =


N∑

i=1

18.9β2(x − xi)
2

δ2
i d

4
i

N∑
i=1

18.9β2(x − xi)(y − yi)

δ2
i d

4
i

N∑
i=1

18.9β2(x − xi)(y − yi)

δ2
i d

4
i

N∑
i=1

18.9β2(y − yi)
2

δ2
i d

4
i

 (7)

U and V are given by

U =

[
N∑

i=1

43.4β(x − xi)log10di

δ2
i d

2
i

N∑
i=1

43.4β(y − yi)log10di

δ2
i d

2
i

]
(8)

V =
N∑

i=1

100(log10di)
2

δ2
i

(9)
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The CRLB of source location is denoted as C([θ]r) which can be calculated by

C([θ]r) = F−1
[r,r] (10)

where C([θ]r) denotes the rth row element of the vector θ, F−1
[r,r] denotes the rth row

and the rth column element of inverse matrix F−1, and r = 1, 2, 3. (10) can be further
rewritten as

C([θ]r) =
[(

Fx − UVUT
)−1

]
r,r

(11)

According to the definition of the vector θ, the CRLB for location estimation is written
as

C(x) =
[
F−1

]
1,1

+
[
F−1

]
2,2

(12)

4. Linear Estimator. In the following, we in detail describe the proposed linear esti-
mator as two-step: initial coarse solution and iterative refinement for the source location.

4.1. Initial coarse solution. When the PLE β is selected as the value larger than the
true, the positioning result is not sensible to the PLE β. Considering that the impact of
the larger PLE β is less, we set the PLE β as a given value β0. Here we firstly introduce
the linear estimator with a given PLE. (1) is rewritten as

d2
i = 10

p0−pi+εi
5β0 (13)

where i = 1, 2, . . . , N , εi is the noise which conforms to the Gaussian distribution with
zero mean and variance δ2

i . Expanding the right side of (13) with the Taylor series and
neglecting the high order terms, (13) is rewritten as

d2
i = λi +

λilog1010

5β
εi (14)

where λi = 10
p0−pi

5β , i = 1, 2, . . . , N . (14) is also rewritten as

−2xix − 2yiy + x2 + y2 = −x2
i − y2

i + λi +
λilog1010

5β
εi (15)

where the λi value is related to the given PLE β0. Let z = [x y x2 + y2], and (14) is
rewritten as a linear matrix form

Az = b + α (16)

where the row vector of A is equal to [−2xi − 2yi 1], and the elements of b and α are

equal to [−x2
i − y2

i + λi] and
[

λilog1010
5β0

εi

]
. By using the weighting least square method,

the estimate of the vector z is

z =
(
ATΣ−1

α A
)−1

AT Σ−1
α b (17)

where Σα = E
(
αT α

)
, and the elements of Σα are written as

Σα[i, j] =


0 i ̸= j

λ2
i (log1010)2

25β2
0

δ2
i i = j

(18)

where i, j = 1, 2, . . . , N . Extracting from the vector z, we derive the initial coarse solution
for source location estimate x0 which is obtained with

x0 = z(1 : 2) (19)

Above solution for the source location is coarse due to the given inaccurate PLE β0. To
obtain more accurate estimate, we introduce the refinement technique to improve the
solution.
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4.2. Iterative refinement. Based on the initial estimates β0 and x0, we further refine
the source location in the following. The estimates in the kth iteration are denoted as xk

and βk respectively. Considering the incremental equations{
xk = xk−1 + ∆xk

βk = βk−1 + ∆βk
(20)

where ∆xk = [∆xk ∆yk]
T and ∆βk are the corresponding optimized increment. Substi-

tuting (20) in (1), we obtain that

5 (βk−1 + ∆βk) log10

(
2eT

k−1∆xk + d2
i,k−1

)
= p0 − pi + εi (21)

where d2
i,k−1 = (xk−1 − xi)

2 + (yk−1 − yi)
2. Expanding the left side of (21) and neglecting

the high order terms, (21) is rewritten as

10β

di,k−1ln10
eT

k−1∆xk + 10log10di,k−1∆βk = p0 − pi − 10βk−1log10di,k−1 + εi (22)

Let θk = [∆xk ∆βk]
T , and (22) can be written as the matrix form

Ck−1∆θk = dk−1 + ε (23)

where the row vector of Ck−1 is
[

10β
di,k−1ln10

(xk−1 − xi)
10β

di,k−1ln10
(yk−1 − yi) 10log10di,k−1

]
,

the row elements of dk−1 and ε are equal to [p0 − pi − 10βk−1log10di,k−1] and [εi], and
i = 1, 2, . . . , N . So the WLS solution to (23) is

∆θk =
(
CT

k−1Σ
−1
ε Ck−1

)−1
CT

k−1Σ
−1
ε dk−1 (24)

where the elements of Σε = E
(
εT ε

)
are

Σε[i, j] =

{
0 i ̸= j
δ2
i i = j

(25)

where i, j = 1, 2, . . . , N . Then the refined estimates are obtained with

∆θk = ∆θk−1 + ∆θk (26)

5. Evaluation. To test the performance of the proposed linear estimator and the iter-
ative refinement method, the simulations are conducted in the MATLAB software. Six
anchor nodes are set at the points (70, 10), (40, 150), (150, 50), (10, 80), (190, 110) and
(150, 180) in a 200 m × 200 m square region. The location of the source node is set at
(100, 100) in a prior. All noises are Gaussian with zero mean and variance δ2. In the sim-
ulations, the transmit power p0 and the true PLE β are set to −45 dB and 2, respectively.
The accuracy performance is evaluated with mean square error (MSE) which is defined
as

MSE =
1

Mc

Mc∑
i=1

∥ xi − xo
i ∥2 (27)

where Mc is called as the Monte Carlo times, and xi and xo
i denote the estimated and the

true location of the source node in the ith Monte Carlo run, respectively. In our simulation,
we use the average of 5000 Monte Carlo runs to evaluate the accuracy performance of the
proposed algorithm. We firstly test the performance of the proposed algorithm with
different β0 and iterative times.
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5.1. Impact of iteration times. To test the impact of the iteration times, δ2 is set to
0.12. When the PLE β0 is set to 2.2, 2.5, 3, 4 and 5, Figure 1(a) plots the MSE in log
scale with different iteration times. It can be seen that the MSE performance is improved
as the iteration times increases. When the iteration times is larger than 2, the MSE is
convergent to −2 dB which provides the optimal performance. Apparently, when the
larger β0 is selected, the MSE performance is the worse. If β0 is closer to the true PLE,
the MSE in log scale is less. When β0 is set to 2.2, the MSE in log scale of initial solution
is 12.1 dB. However when β0 is increased to 2.5, the MSE in log scale of initial solution
achieves 16.2 dB.

When the noise variance δ2 is also set to 0.12, Figure 1(b) plots the estimated PLE
with different iteration times. As can be seen that the estimated PLE is stable when the
iterative time is larger than 1. The convergent speed of the estimated PLE is fast. In
the second iteration, the estimated PLE is very close to the true result, so the accurate
source location can also be obtained along with the estimated PLE.

5.2. Impacts of noises. To test the impacts of noises, we also perform Monte Carlo
simulations with 5000 ensemble runs to evaluate the mean square error (MSE) of the
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source location estimation. When the noise variance δ2 is varied from 0.12 to 12 (i.e.,
10log10 (δ2) is varied from −20 dB to 0 dB), the MSE in log scale of four different states
is plotted in Figure 2(a). It can be seen from Figure 2(a) that the MSE performance in
log scale is worse as the noise variance increases. When the iterative times is set to 3, the
MSE performance is very close to the CRLB of source location estimation. When δ2 is
set to 0.12, 10log10(MSE) is −1.7 dB in the third iteration. However, when δ2 is increased
to 12, 10log10(MSE) achieves 18.2 dB in the third iteration. Similarly the performance
order of the proposed algorithm in Figure 2(a) is the same as that of Figure 1(a) when
β0 is selected to be larger.

When the noise variance δ2 is set to 0.12 and 0.22, Figure 2(b) plots the cumulative
distribution function (CDF) of positioning error with 5000 MC runs. It can be seen that
90% of positioning error is less than 1.6 when δ2 is set to 0.12. However, 90% of positioning
error is less than 6.1 when δ2 is set to 0.22. 65% of positioning error is less than the CRLB
when δ2 is set to 0.12 or 0.22.

6. Conclusion. When the PLE is unavailable, we introduce the linear estimator to ob-
tain the source location. The linear estimator provides a closed-form solution to the
source location and avoids the shortcoming of the ML estimator by setting a larger PLE
in a prior. Then the iterative refinement technique is proposed to improve the initial
coarse solution. The accuracy performance degrades as the noise increases for the pro-
posed methods. When the iterative times is larger than two, the source location estimate
is very close to the optimal CRLB performance. The estimated PLE is convergent as the
iterative times increase.
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