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Abstract. As noise removal methods for digital images, various kinds of edge-preser-
ving smoothing filters employing normalized convolution or Poisson image editing have
been proposed. Generally, those filters require high computational cost in return for their
superior performance of noise removal. Therefore, many acceleration methods for those
filters have been proposed so far. In this paper, especially inspired by the gradient-domain
image processing of Poisson image editing, we propose a fast and simple infinite impulse
response (IIR) edge-preserving smoothing filter by focusing particularly on gradients of
an input image. Through some experiments, we verify that the proposed method with
a small filter window is able to provide reasonably practicable edge-preserving smooth-
ing performance compared to those of finite impulse response (FIR) filters such as the
ordinary bilateral filter and guided filter, and requires only complexity of linear order
computation.
Keywords: Edge-preserving smoothing, Image gradient, IIR filter

1. Introduction. Edge-preserving smoothing is a fundamental technique in the fields of
digital image processing [1, 2, 3] and computer graphics [4]. It smooths unnecessary local
small-amplitude signal with keeping strong edges in the image. The bilateral filter [5] and
ε-filter [6] are well-known and frequently-used FIR filters. The processing of those filters is
conducted based on normalized convolution. Thus, their computational cost is relatively
high. To cope with this problem, many acceleration methods, especially for bilateral filter,
have been proposed so far. Furthermore, the filters with low computational cost such as
guided filter [7] and domain transform filter [8] have been proposed.

On the other hand, edge-preserving smoothing methods based on gradient-domain im-
age processing such as Poisson image editing [9] have been proposed and applied to various
kinds of applications [10, 11]. However, in gradient-domain image processing, a resulting
image in the original space must be reconstructed from a gradient domain by solving a
Poisson’s equation under a given boundary condition. In this case, the size of an input
image leads directly to computational cost for solving the Poisson’s equation because it
is a simultaneous linear equation.

To cope with the above-mentioned problems, in this study, we propose a fast and simple
IIR edge-preserving smoothing filter by especially focusing on the gradient-domain of an
input image. Concretely, the proposed method smooths weak gradients in an input image
by reconstructing the image by recursive integration of the one-dimensional signal instead
of solving Poisson’s equation. Compared to FIR filters, the proposed IIR filter is able to
provide powerful smoothing results with a small size of the filter window. We evaluate the
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edge-preserving smoothing performance and computational cost of the proposed method
by using grayscale artificial and natural images.

2. Proposed Method. The proposed method is realized by IIR filtering in which an
output value is used as an input value in the next step. First, a gradient ∇I(x, y) at pixel
(x, y) is calculated with the input image I and the output value T as follows:

∇I(x, y) = (Ix(x, y), Iy(x, y)), (1)

Ix(x, y) = I(x, y) − T (x − 1, y), (2)

Iy(x, y) = I(x, y) − T (x, y − 1). (3)

Next, for each of x and y, tentative values Px(x, y) and Py(x, y) are calculated by
reducing and then integrating the gradients Ix(x, y) and Iy(x, y) as follows:

Px(x, y) =

{

I(x, y) if x = 1, M

T (x − 1, y) + αIx(x, y) otherwise,
(4)

Py(x, y) =

{

I(x, y) if y = 1, N

T (x, y − 1) + αIy(x, y) otherwise.
(5)

The average of those values P (x, y) is calculated as follows:

P (x, y) =
Px(x, y) + Py(x, y)

2
. (6)

In Equations (4) and (5), M and N are the numbers of pixels in row and column, respec-
tively. The reduction coefficient α is a real value between 0 and 1. If α = 1, the gradients
are not reduced; thus, P (x, y) = I(x, y). If α < 1, the input image is smoothed by the
reduction and integration of the gradients.

The output value T (x, y) is calculated by using I(x, y) and P (x, y) as follows:

T (x, y) =

{

P (x, y) if |e| ≤ ε

(1 − β)I(x, y) + βP (x, y) otherwise,
(7)

e = I(x, y) − P (x, y). (8)

If the absolute value of the difference between I(x, y) and P (x, y) is equal to or smaller
than a threshold ε, the final output value T (x, y) is equal to P (x, y). Otherwise, T (x, y) is
obtained as a weighted average of I(x, y) and P (x, y). β is a weight coefficient calculated
as follows:

β =
ε

|e|
. (9)

If the absolute value |e| is large, then β makes I(x, y) dominant in the output image. On
the other hand, if |e| ≃ ε, then β makes P (x, y) dominant in the output image.

The above-mentioned processing is performed by raster scanning order. However, the
above-mentioned processing causes strain in the output image because of the phase lag of
IIR filtering. In order to cope with this strain caused by the phase lag, by reference to [12],
the input image is processed separately four times with changing the scanning direction.
Finally, the four obtained images T1(x, y), T2(x, y), T3(x, y), T4(x, y) are averaged in order
to obtain an output image without strain. Specifically, the final output of the proposed
method V (x, y) is calculated as follows:

V (x, y) =
1

4

4
∑

i=1

Ti(x, y). (10)
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3. Experiments. We evaluated the edge-preserving smoothing performance and com-
putation time of the proposed method by using an artificial image and images included
in the standard image database (SIDBA) [13]. All the images have 256×256 pixels and
are 8-bit grayscale. As targets for comparison, the bilateral filter [5] and guided filter [7]
were used. As an evaluation index, the following mean square error (MSE) was used:

MSE =
1

MN

M
∑

x=1

N
∑

y=1

(I(x, y) − g(x, y))2, (11)

where I and g are the original image and the output image, respectively.
Figures 1(a)-1(e) show the results of Gaussian noise removal for the artificial image.

The artificial test image without noise has two regions; the pixel values of the left-side and

(a) (b)

(c) (σd, σr) = (3, 20) (d) (r, ǫ) = (4, 102)

(e) (α, ε) = (0.1, 20)

Figure 1. Smoothing results for the artificial image (cross-sectional 1-D
signals are shown). (a) Input image, (b) noise-corrupted image, (c) smooth-
ing result by the bilateral filter, (d) smoothing result by guided filter, and
(e) smoothing result by the proposed method.
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right-side areas are 50 and 200, respectively. Figures 1(a)-1(e) show the cross-sectional
one-dimensional signal at the 129th row. The parameters of each method were empirically
decided so that each one shows the best performance. The bilateral filter realized the
ideal edge-preserving smoothing. On the other hand, both guided filter and the proposed
method showed imperfect edge-preserving smoothing. The former method showed the

(a) (α, ε) = (0.25, 30) (b) (α, ε) = (0.2, 30) (c) (α, ε) = (0.15, 30) (d) (α, ε) = (0.1, 30)

(e) (α, ε) = (0.25, 60) (f) (α, ε) = (0.2, 60) (g) (α, ε) = (0.15, 60) (h) (α, ε) = (0.1, 60)

Figure 2. Filtering results for “Woman” by the proposed method with
various parameters

(a) (α, ε) = (0.25, 30) (b) (α, ε) = (0.2, 30) (c) (α, ε) = (0.15, 30) (d) (α, ε) = (0.1, 30)

(e) (α, ε) = (0.25, 60) (f) (α, ε) = (0.2, 60) (g) (α, ε) = (0.15, 60) (h) (α, ε) = (0.1, 60)

Figure 3. Filtering results for “Barbara” by the proposed method with
various parameters
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remained small amplitude noise in the entire region. The latter one showed slight over-
smoothing around the edge compared to the result by the bilateral filter. From these
results, compared to the bilateral filter, it can be said that the other filters have different
edge-preserving smoothing characteristics.

Figures 2 and 3 show the experimental results for “Woman” and “Barbara” in order
to show the effects of the two parameters of the proposed method. From these results, it
can be confirmed that the parameters α and ε control the smoothing level and the size of
smoothing area, respectively.

(a) σ = 0.05 (b) σ = 0.1 (c) σ = 0.05 (d) σ = 0.1

(e) (σd, σr) = (0.33, 12) (f) (σd, σr) = (0.33, 28) (g) (σd, σr) = (0.66, 15) (h) (σd, σr) = (0.99, 22)

(i) (r, ǫ) = (1, 92) (j) (r, ǫ) = (1, 192) (k) (r, ǫ) = (1, 72) (l) (r, ǫ) = (1, 152)

(m) (α, ε) = (0.4, 5) (n) (α, ε) = (0.2, 10) (o) (α, ε) = (0.5, 5) (p) (α, ε) = (0.4, 10)

Figure 4. Filtering result for “Woman” and “Barbara” corrupted by
Gaussian noise. (a)-(d) Noise-corrupted input images, (e)-(h) filtering re-
sults by the bilateral filter, (i)-(l) filtering results by guided filter, (m)-(p)
filtering results by the proposed method.
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Figures 4(a)-4(p) and Table 1 show the results for the natural images corrupted by
Gaussian noise. In each method, the parameters were set so that each one shows the best
performance. From the results shown in figures, it seems that the visual qualities of the
resulting images by all of the methods are almost equivalent on the surface. However, from
Table 1, it can be quantitatively confirmed that the bilateral filter and guided filter showed
slightly better performance than the proposed method and also that the performance of
the proposed method is reasonably practicable.

Table 1. Evaluation by MSE for bilateral filter (BF), guided filter (GF),
and the proposed method (Prop.). σ denotes a standard deviation of Gauss-
ian noise.

σ = 0.05 σ = 0.1
Image Name Input BF GF Prop. Input BF GF Prop.

Airplane 24.5 13.1 13.0 14.9 98.6 38.0 40.0 45.0
Barbara 24.8 17.9 17.8 20.7 97.8 54.7 56.7 63.5
Boat 24.8 12.3 12.4 14.0 98.7 33.2 35.1 41.1
Bridge 24.4 22.0 21.8 23.7 97.4 69.3 70.1 75.1
Building 23.8 16.5 17.3 18.0 94.9 46.3 49.5 51.6
Cameraman 24.2 11.7 12.2 14.1 95.0 34.5 36.9 42.2
Girl 24.4 12.8 12.6 13.6 97.1 29.3 30.2 35.0
Lax 24.6 20.2 20.3 23.1 98.5 59.3 62.3 69.0
Lenna 24.8 12.4 12.1 14.0 97.9 33.1 34.3 41.3
Lighthouse 23.6 15.9 15.9 18.8 93.7 48.0 50.3 57.0
Text 23.4 17.7 17.7 18.8 93.3 52.3 52.6 56.6
Woman 24.5 13.3 13.4 14.9 98.3 34.8 37.2 43.0

Average 24.3 15.5 15.5 17.4 96.8 44.4 46.3 51.7

The computational complexities of each method are explained as follows. The compu-
tational complexity of the bilateral filter is O(nr2). Here, n and r are the total number
of the pixels and the radius of the filter kernel, respectively. On the other hand, the
computational complexity of the proposed method is O(n). This is the same as that of
guided filter which is a fast and sophisticated edge-preserving smoothing filter. In this
regard, the proposed method requires four times filtering for the whole image in order to
resolve the phase lag. Meanwhile, guided filter requires a pre-calculated integral image.
It is difficult to compare the calculation speed accurately in the hardware level, and we
show the numbers of the four arithmetic operations of each method in Table 2 just for
reference. From the table, it can be said that both methods need almost the same num-
bers of operations, though the proposed method needs more multiplication and division
operations.

Table 2. The numbers of operations of guided filter and the proposed method

Guided filter
Proposed method Proposed method
(in each direction) (in 4 directions + averaging)

Addition and
subtraction

47 8 32 + 3

Multiplication
and division

13 6 24 + 1

Total 60 14 60
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Actually, although the proposed method takes longer calculation time than that of
guided filter, the proposed method can be parallelized smoothly; thus, this problem is eas-
ily solved. For reference, as a result of simple parallelization with OpenMP and four-core
central processing unit (CPU), the calculation time of the proposed method was shorter
than that of guided filter. However, this matter should be investigated more because
the performance of parallel processing depends on the environment and implementation
methods.

4. Conclusions. In this paper, we proposed a fast edge-preserving smoothing IIR filter
by focusing on the gradient-domain image processing without solving Poisson’s equation
for the reconstruction. In the proposed method, the complexity of linear order computa-
tion was realized while it requires four times filtering in order to remove the phase lag.
Through a series of experiments, the reasonably practicable edge-preserving smoothing
performance of the proposed method was verified.

The future works are to develop an automatic parameter adjustment method and an
acceleration method in the image reconstruction by using finely-tuned parallel computing
technique.
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