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Abstract. This paper proposes a stability criterion for T-S fuzzy systems with constant
time delay. Based on the Bessel-Legendre integral inequality, we propose a less conser-
vative stability criterion than the existing ones for the T-S fuzzy systems with constant
time delay. Finally, two classical examples are given to illustrate the effectiveness of the
result.
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1. Introduction. Fuzzy logic control is an efficient approach to model the plant without
complete knowledge. Many applications of fuzzy control were reported in a lot of areas,
e.g., industrial processes [2, 3], and mechanical process. Takagi-Sugeno (T-S) fuzzy model
is the most popular in all of the fuzzy methods [4, 5, 6].

Time-delay is generally regarded as a main source of instability and poor performance,
which arises in many processes such as manufacturing system, telecommunication, eco-
nomic and chemical engineering system [9, 10]. So, many scholars devoted themselves to
investigating the stability of fuzzy systems with time delay.

For example, by using LMI, [7, 8] presented controller design for a class of fuzzy dy-
namic systems with time delay in both continue and discrete case. In [7], the Lyapunov-
Krasovskii was employed to analyze and synthesize the T-S fuzzy system with time-delay
and a sufficient condition of delay-independent was developed. In [8], by using Lyapunov-
Razumikhin functional approach, the similar work was done. While, as we know, the
integral inequality plays an important role in reducing the conservatism of the result of
time-delay systems. To some extent, we can say that the conservatism of integral inequal-
ity can decide the conservatism of result for time-delay systems. Recently, A. Seuret and
F. Gouaisbaut [1] proposed an integral inequality called Bessel-Legendre integral inequal-
ity, which encloses the Jensen inequality and the improved Wirtinger-based inequality
as special cases. There is some hope to prove that the conservatism of Bessel-Legendre
integral inequality can be arbitrarily reduced.

Recently, many scholars focus their attention on the control problem of T-S fuzzy
systems with time-delay. For instance, the problem of delay-dependent conditions for
stability and stabilization of T-S fuzzy systems with time-delay were proposed in [11,
12, 13]. In [14], a delay partitioning approach was used for stability and stabilization of
delayed T-S fuzzy systems. [15, 16] addressed the delay-dependent stability analysis and
synthesis of uncertain T-S fuzzy systems with time-varying delay.

Motivated by the above work, the aim of this paper is to study the problem of stability
analysis for T-S fuzzy systems with time delay by Bessel-Legendre integral inequality. In
this paper, we proposed a sufficient condition for the stability of T-S fuzzy systems with
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constant delay. Based on Bessel-Legendre integral inequality, we give a less conservative
stability criterion for the T-S fuzzy system with constant delay.

This paper is organized as follows. In Section 2, the T-S fuzzy model and Bessel-
Legendre integral inequality are introduced. Section 3 presents the main results of the
paper on the stability analysis of T-S fuzzy systems with constant time delay using clas-
sical Lyapunov-Krasovskii functional. Section 4 illustrates our results with two examples
extracted from the literature. Section 5 gives the conclusions.

Notations: The notations used throughout this paper are fairly standard. Rn denotes
the n-dimensional Euclidean space with vector norm | · |. The superscript “T” stands
for matrix transpose, and the notation P > 0 (P ≥ 0) means that matrix P is real
symmetric and positive (or being positive semi-definite). I and 0 are used to denote
appropriate dimensions identity matrix and zero matrix, respectively. The parameter
diag{· · · } denotes a block-diagonal matrix. For given t > 0, h > 0 and continuous
function x(t) from [−h, +∞] to Rn, set xt(s) = x(t+s) for all s ∈ [−h, 0]. Matrices, if not
explicitly stated, are assumed to have compatible dimensions for algebraic operations.

2. Problem Statement and Preliminaries. Consider a continuous-time T-S fuzzy
system with constant time delay. The i-th rule of this T-S fuzzy model is of the following
form:
Rule i: If s1(t) is Fi1 and s2(t) is Fi2 and . . . sp(t) is Fip then,{

ẋ(t) = Aix(t) + Adix(t − h), t ≥ 0
x(t) = ϕ(t), t ∈ [−h, 0]

(1)

where s1(t), s2(t), . . . , sp(t) are the premise variables, and each Fil (i = 1, 2, . . . , r; l =
1, 2, . . . , p) is a fuzzy set. x(t): [0,∞) −→ Rn is the state vector, ϕ(t) is the initial condition,
Ai and Adi ∈ Rn×n are constant matrices, and h > 0 is a constant time delay.

By a center-average defuzzier, product inference and singleton fuzzifier, the dynamic
fuzzy model in [1] can be represented by{

ẋ(t) = A(t)x(t) + Ad(t)x(t − h), t ≥ 0
x(t) = ϕ(t), t ∈ [−h, 0]

(2)

where 

A(t) =
r∑

i=1

hi(s(t))Ai

Ad(t) =
r∑

i=1

hi(s(t))Adi

hi(s(t)) =

∏p
l=1 Fil(sl(t))∑r

i=1

∏p
l=1 Fil(sl(t))

, i = 1, 2, . . . , r

(3)

in which Fil(sl(t)) is the grade of membership of sl(t) in Fil and s(t) = (s1(t), s2(t), . . .,
sr(t)). By definition, the fuzzy weighting functions

∑r
i=1 hi(s(t)) = 1 and hi(s(t)) ≥ 0.

For simplicity, hi is used to represent hi(s(t)) in the following description.
In obtaining our main results of this paper, the following lemma plays an important

role, and we show it as follows.

Lemma 2.1. [1] For given symmetric positive definite matrix R > 0 and a differentiable
function x: [−h, 0] −→ Rn, the following inequality holds:∫ 0

−h

ẋT (u)Rẋ(u)du ≥ 1

h
εT

N

[
N∑

k=0

(2k + 1)ΓN(k)T RΓN(k)

]
εN (4)
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holds, for all integer N ∈ N, where

εN =

{ [
xT (0) xT (−h)

]T
, if N = 0,[

xT (0) xT (−h) 1
h
ΩT

0 · · · 1
h
ΩT

N−1

]T
, if N > 0,

ΓN(k) =

{
[I − I]T , if N = 0,[
I (−1)k+1I γ0

NkI · · · γN−1
Nk I

]T
, if N > 0,

γi
Nk =

{
−(2i + 1)

(
1 − (−1)k+i

)
, if N = 0,

0, if N > 0.

Ωk =
∫ 0

−h
Lk(u)x(u)du and Lk(u) are the Legendre polynomials.

3. Main Results.

Theorem 3.1. For a given integer N and a constant delay h, assume that there exists a
matrix PN ∈ R(N+1)n and two symmetric positive definite matrices S, R ∈ Rn such that
the LMIs

ΘN(h) =

{
PN > 0, if N = 0,
PN + 1

h
diag{0, SN−1} > 0, if N > 0.

Φi
N(h) = Φi

N0(h) −

 ΓN(0)
· · ·

ΓN(N)

T

RN

 ΓN(0)
· · ·

ΓN(N)

 < 0

hold for i = 1, 2, . . . , r, then the system (2) is asymptotically stable for constant delay h,
where, ΓN(k) for all k = 0, . . . , N, are defined in Lemma 2.1 and

Φi
N0(h) = GT

N(h)PNHN + HT
NPNGN(h) + S̃N + h2(F i

N)T RF i
N ,

S̃N = diag(S,−S, 0Nn),

RN = diag{R, 3R, . . . , (2N + 1)R},
SN = diag{S, 3S, . . . , (2N + 1)S},
F i

N = [Ai, Adi, 0n,nN ], i = 1, 2, . . . , r,

GN(h) =

[
I 0n 0n,nN

0nN,n 0nN,n hInN

]
,

HN =
[
F T

N , ΓT
N(0), ΓT

N(1), . . . , ΓT
N(N − 1)

]
.

Proof: Similar to [1], choose the augmented vector as

x̃N(t) =


xt(0)∫ 0

−h
L0(s)xt(s)ds

...∫ 0

−h
LN−1(s)xt(s)ds


and

εN(t) =


xt(0)

xt(−h)
1
h

∫ 0

−h
L0(s)xt(s)ds

...
1
h

∫ 0

−h
LN−1(s)xt(s)ds

 , N ≥ 1.

We choose the LKF as follows

VN(xt, ẋt) = x̃T
N(t)PN x̃N(t) +

∫ t

t−h

xT (s)Sx(s)ds + h

∫ t

t−h

∫ t

θ

ẋT (s)Rẋ(s)dsdθ.
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Obviously, based on Lemma 3 in [1], we know that

VN(xt, ẋt) ≥ x̃T
N(t)ΘN x̃N(t) + h

∫ t

t−h

∫ t

θ

ẋT (s)Rẋ(s)dsdθ.

Then, we compute the derivative of VN as

V̇N(xt, ẋt) = 2x̃T
N(t)PN

˙̃xN(t) + xT
t (0)Sxt(0) − xT

t (−h)Sxt(−h)

+ h2ẋT
t (0)Rẋt(0) − h

∫ 0

−h

ẋT (s)Rẋ(s)ds.
(5)

Noting that

x̃N(t) = GN(h)εN(t), ˙̃xN(t) = HNεN(t), ẋt(0) =
r∑

i=1

hi(s(t))F
i
NεN(t).

we get that

V̇N(xt, ẋt) =
r∑

i=1

hi(s(t))ε
T
N(t)Φi

N0(h)εN(t) − h

∫ 0

−h

ẋT (s)Rẋ(s)ds. (6)

Applying Lemma 2.1 to (6), we can obtain that

V̇N(xt, ẋt) ≤
r∑

i=1

hi(s(t))ε
T
N(t)Φi

N(h)εN(t).

Noting (3), we can get Theorem 3.1.

4. Numerical Example.

Example 4.1. Let us consider the system (1) with

A1 =

[
−2.1 0.1
−0.2 −0.9

]
, Ad1 =

[
−1.1 0.1
−0.8 −0.9

]
,

A2 =

[
−1.9 0
−0.2 −1.1

]
, Ad2 =

[
−0.9 0
−1.1 −1.2

]
.

The largest allowable delay of h derived from [11, 12, 13, 14] and Theorem 3.1 is shown
in Table 1. It can be concluded that the method proposed in this paper is less conservative
than those in [11, 12, 13, 14].

Table 1. The largest allowable delay for Example 4.1

Methods The largest h
[11] 0.65
[12] 3.37
[13] 3.85

[14, m = 2] 4.28
[Th.1, N = 2] 4.42

Example 4.2. Consider the system (1) with

A1 =

[
−2 0
0 −0.9

]
, Ad1 =

[
−1 0
−1 −1

]
,

A2 =

[
−1 0.5
0 −1

]
, Ad2 =

[
−1 0
0.1 −1

]
.
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For this example, the largest allowable delay of h derived from [15, 16] and Theorem
3.1 is shown in Table 2. It can be concluded that the method proposed in this paper is
better than those mentioned above.

Table 2. The largest allowable delay for Example 4.2

Methods The largest h
[15] 1.5974
[16] 1.6341

[Th.1, N = 2] 2.04

5. Conclusions. The problem on the stability of T-S fuzzy systems with interval con-
stant delay is addressed. Based on the Bessel-Legendre, a much less conservative stability
criterion than some existing ones for the systems under consideration is presented. Finally,
two numerical examples are given to illustrate the effectiveness of the result.

In future work, we will consider the H∞ control of the T-S fuzzy systems with interval
constant delay based on the result in this paper.
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