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Abstract. This paper aims to investigate the stochastic resonance (SR) phenomenon
of binary detection in parallel sensor networks (PSNs) with additive noise and multiplica-
tive noise. Unlike many other kinds of networks, PSN is the special one that flows from
a source common to all nodes in the sensor network. In this PSN, the background addi-
tive noise can always be regarded as Gaussian form in terms of the central limit theorem
(CLT), while the external multiplicative noise exhibits a different style under different
scenarios. Based on the maximum a posteriori probability (MAP) criterion, we first an-
alyze the influence of both multiplicative and additive Gaussian noise intensities on error
detection probability of the PSN. The theoretical and numerical analyses reveal that noise
can improve binary signal detection performance for the simplified version of the PSN
(single-sensor system), which leads to producing increased information-rich responses.
Meanwhile, we find that more sensor nodes can bring higher signal transmissions and
SR occurs easier with the signal in larger sensor threshold levels. Finally, we extend the
multiplicative noise form to uniform case and present the corresponding SR efficacy.
Keywords: Stochastic resonance, Parallel sensor networks, Error detection probability,
Background additive noise, External multiplicative noise

1. Introduction. Noise can sometimes enhance the responses of some nonlinear systems.
This counterintuitive phenomenon is primarily known as stochastic resonance (SR), which
was proposed by Benzi et al. in 1981 to explain the periodic climate change of Earth’s
ice and warm ages in remote antiquity [1]. In the field of artificial sensors and biological
senses, noise is ubiquitous. Extensive studies have been reported on SR as an effective
way to make use of the noise [2-12].

Parallel sensor networks (PSNs) are proposed to model the simplest architectures in
sensor networks where the common information source is processed separately through
multiple sensors and a fusion operator that combines the individual measurements of each
sensor to create an overall response. Owing to the interaction between random noise and
nonlinearity, SR phenomena are often observed in the PSNs. It is worth noting that PSNs
can potentially imitate from biological sensory processing to engineered sensors, such as
synapses, receptor cells, and noisy analog-to-digital converters. Zozor et al. [6] first came
up with the conception of PSN to depict a population of sensors that a common informa-
tion source is transmitted to each sensor to produce binary measurements. McDonnell [7]
investigated the information transmission optimization in PSNs. It is demonstrated that
the information capacity in the PSN (their nodes are quantized to finite states) can be
achieved by discrete input signal. In [8], Chen et al. explored the distributed detection
problem in a parallel fusion network to achieve possible global optimization performance.
They compared the optimal and suboptimal rules for distributed detection, where the
input constant signal is subjected to Gaussian noise.
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A PSN is equipped with the three salient features. First, multiple sensor nodes receive
a common input signal and make stochastic observations. The measured input signal can
be various kinds of information source, such as discrete binary signal [5,9] and continuous
Gaussian signal [10]. The meaning of stochastic observations is that each measurement
denotes a random variable under the common input signal. This stochasticity may arise
either internally in a sensor node (background additive noise) or externally (multiplica-
tive random noise). Second, each sensor makes local processing of the noisy signal via
quantization. The node’s input is composed of the information source and random noise.
Due to the quantization nature of each sensor node in the network, the node’s output is
a discrete variable with finite states. Finally, all the outputs from the PSN’s individual
sensors are combined by summation in the ‘fusion center’. The resulting measurements
are pooled to form an overall network response, which results in a single observation of
the information source.

Unfortunately, most of researches on PSNs only stare at one noise source. As a matter
of fact, various noise sources such as the synchronous action of both additive and mul-
tiplicative noise are bound to arise in PSNs, e.g., the background and external noise in
electronic devices. In this paper, we attempt to investigate the influence of background
and external noise on the binary detection of PSN. The background noise is usually
induced by the complex motion of the atoms in electronic components, which can be
approximately regarded as additive Gaussian noise on the basis of the central limit the-
orem (CLT) [2,13]. The external noise produced with signals or information channels is
often signal-dependent or multiplicative, which has a variety of forms [5,12]. First, we
describe a PSN model and introduce the mechanism of information transmission. Second,
we explore the binary distributed detection of the PSN in the scenario with background
additive Gaussian and external multiplicative Gaussian noise. Then, we extend the exter-
nal disturbance to the uniform case, which represents a general class of scenario. Finally,
we analyze the influence of noise, threshold and array number altogether and evaluate the
detection performance of the PSN in detail.

2. System Model. Consider a parallel sensor network with N noisy sensor nodes as
shown in Figure 1. All sensors receive the common input s, which is a binary signal (s1, s2).
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Figure 1. Schematic diagram of a parallel sensor network. This PSN con-
sists of N identical binary-quantizing nodes, the input signal s is simultane-
ously disturbed by background additive noise ζi and external multiplicative
noise ϑi and the output of each sensor node yi is quantized to produce bi-
nary discrete results. The overall PSN’s response ysum processed by a fusion
center is the sum of the N sensors’ outputs, i.e., ysum =

∑N
i=1 yi.
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It is well known that the background additive noise and the external multiplicative noise
are widely distributed in physical systems. Due to the CLT, the background additive
noise is always Gaussian noise [2,13]. In addition, the external multiplicative noise may
be a variety of distribution. Here, we first assume that the i -th individual sensor node is
subject to independent and identically distributed (i.i.d.) additive Gaussian noise ζi and
multiplicative Gaussian noise ϑi, respectively. So, we have

⟨ζi, ζj⟩ = 0, ⟨ϑi, ϑj⟩ = 0, i ̸= j and ⟨ζi, ϑj⟩ = 0, i, j = 1, 2, . . . , N (1)

In order to quantitatively explore the effect of noise, we assume that the probabil-
ity density of Gaussian noises ζi, ϑi, are obedient to the standard Gaussian distribu-
tion. Hence, the probability density function (PDF) and cumulative distribution func-
tion (CDF) of variables ζi, ϑi are expressed as f(t) = 1

/√
2π exp (−t2/2) and F (t) =

1/2 + 1/2erf (t
/√

2) with the error function erf (t) = 2
∫ t

0
exp (−z2)dz

/√
π.

In the PSN, the output of each sensor node yi is given by the Heaviside function [10]

yi =

{
1, xi ≥ u
0, xi < u

(2)

where u is the threshold level of sensor nodes in the PSN.
The input to each sensor node xi is disturbed by multiplicative and additive noises as

xi = s + Mζis + Aϑi (3)

where M , A denote the multiplicative noise intensity and additive noise intensity, respec-
tively.

For the given input signal s, the overall response of the PSN ysum =
∑N

i=1 yi obeys
the binomial distribution, and its values range from 0 to N (we denote this domain as
R = {m|m = 0, 1, . . . , N}). The probability of ysum = n (n ∈ R) can be calculated by

P

{
N∑

i=1

yi = n|s

}
= Cn

Nqn
s (1 − qs)

N−n (4)

where Cn
N = N !

n!(N−n)!
, qs = P {yi = 1|s}, n = 0, 1, . . . , N .

3. A Noisy Binary Detection in the PSN. In this section, we give the analysis of the
detection performance of the proposed PSN subject to both additive Gaussian noise and
multiplicative Gaussian noise. The exact expression of error detection probability (EDP)
is derived. In order to have a better understanding of the impact of multiplicative noise,
additive noise, sensor threshold and the array number on signal detection, we analyze the
EDP metrics of the PSN.

The detection problem of the PSN can be formulated as a binary hypothesis-testing
problem for deciding a null hypothesis H0 (s = s0 = 0) and an alternative hypothesis H1

(s = s1 = 1), and their prior probabilities are P0 and P1 (P0 + P1 = 1). Based on the
likelihood ratio, the binary detection of the PSN can be obtained by

P0 · Pr (ys = n |H0 )

P1 · Pr (ys = n |H1 )
> 1 (5)

to decide hypothesis H0, or to decide hypothesis H1 conversely.
In terms of the maximum a posteriori probability (MAP) criterion, the minimal EDP

reached by this PSN can be expressed as

Per =
1

2
− 1

2

∑
n∈M

|P0 · Pr (ysum = n |H0 ) − P1 · Pr (ysum = n |H1 )| (6)

where Pr (ysun = n |Hl ) denotes the conditional probability of obtaining ysum for hypoth-
esis Hl holds (l = 0, 1).
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So we can also formulate the conditional probabilities as follows:

Pr (yi = 0 |H0 ) = Pr (s0 + Mζis0 + Aϑi < u |H0 ) = F

(
u − s0√

M2s2
0 + A2

)
= q0 (7)

Pr (yi = 1 |H0 ) = 1 − q0 (8)

Pr (yi = 0 |H1 ) = Pr (s1 + Mζis1 + Aϑi < u |H1 ) = F

(
u − s1√

M2s2
1 + A2

)
= q1 (9)

Pr (yi = 1 |H0 ) = 1 − q1 (10)

Herein, we use q0 to denote the conditional probability Pr (yi = 0 |H0 ), and q1 to denote
the conditional probability Pr (yi = 0 |H1 ).

For the sake of convenience and without loss of generality, we assume the input binary
signal s takes the same prior probability (P0 = P1 = 0.5). In [11], Mitaim and Kosko
considered the binary signal which has bipolar form {−A, +A}. While here, we adopt a
more universal unipolar shape with the unit amplitude, i.e., s0 = 0, s1 = 1. The overall
response of the PSN ysum obeys the binomial distribution, which is given as{

Pr (ysum = n |H0 ) = Cn
N(1 − q0)

nqN−n
0

Pr (ysum = n |H1 ) = Cn
N(1 − q1)

nqN−n
1

(11)

Specially, when the array number of the PSN N = 1, the PSN degenerates into a
single-sensor system. Yet, Equation (6) can be simplified as

Per =
1

2
− 1

2

[∣∣∣∣12Pr (y = 0 |H0 )− 1

2
Pr (y = 0 |H1 )

∣∣∣∣+ ∣∣∣∣12Pr (y = 1 |H0 )− 1

2
Pr (y = 1 |H1 )

∣∣∣∣]
=

1

2
− 1

4

{
erf

(
u√
2A

)
− erf

(
u − 1√

2 (M2 + A2)

)}
(12)

We first use the degraded PSN (a single-sensor system) to investigate the influence of
sensor threshold u, additive noise intensity A and multiplicative noise intensity M for SR
efficacy in Sections 3.1 and 3.2.

3.1. The effect of threshold u.

Theorem 3.1. The error detection probability Per increases as noise intensity A and M
when u ∈ (0, 1].

Proof: Equation (12) can be simply denoted as Per = 1/2−1/4
{
erf
(
u/

√
2A
)
−erf

(
(1−

u)/
√

2(M2 + A2)
)}

. Due to the monotonous nature of the error function, we know that
at a fixed additive noise intensity A the Per increases with increasing multiplicative noise
intensity M when u ∈ (0, 1] and decreases with increasing multiplicative noise intensity
M when u ∈ (1,∞], i.e., it shows that the multiplicative noise is always beneficial to the
detection of subthreshold signal. When u ∈ (1,∞], u and u− 1 are both positive, the Per

increases as the noise intensity A and M , i.e., SR does not exist. When u ∈ (1,∞], the
Per alternately increases and reduces with the increasing A, i.e., SR will happen.

On the other hand, we take a derivative with respect to Equation (12), and the opti-

mal sensor threshold is uopt =
− 2

A2+M2 +

√
4

(A2+M2)2
+4
(

1
A2 −

1
A2+M2

)(
1

A2+M2 +2 ln

√
A2+M2

A

)
2
(

1
A2 −

1
A2+M2

) which

means no reduction of Per via adding A and M . Otherwise, it is possible to promote
information transmission with noise.
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3.2. The effect of additive noise intensity A and multiplicative noise intensity
M . For the case of single-sensor structure with different threshold level u, Figure 2 and
Figure 3 show that for fixed multiplicative noise intensity M (or A), the EDP of the
sensor system Per versus additive noise intensity A (or M). In the following experiments,
the curves are obtained by theoretical calculations and the data points marked with solid
triangles are simulated by 105 Monte-Carlo realizations.

3.2.1. Fixed multiplicative noise intensity M . From Figure 2(a), as far as the suprathresh-
old input signal case (u = 0.5), the EDP of the single sensor system Per is always mono-
tone increasing with the increase of additive noise intensity A, and in other words, noises
play the part of negative roles; for the case of subthreshold input signal (u = 2, 4, 8, 16),
with the increase of A, the EDP curves first drop to trough then rise, which shows a
certain amount of noise is beneficial to the signal detection. Figure 2(b) shows, when
u = 0.5, 2, 4, additive noise restrain signal detection, when u = 8, 16, the variation ten-
dency of EDP curves displays SR efficacy, and larger threshold can induce stochastic
resonance happened. Compared with Figure 2(a) (M = 1) and Figure 2(b) (M = 10),
Figure 2(c) (M = 100) demonstrates whether the signal is above threshold or not, the
EDPs are invariably monotone increasing with the increase of the additive noise intensity,
i.e., it does not exhibit the SR (SSR) phenomenon. This is due to the fact that too strong
multiplicative noise leads the composition of the input signal before entering the threshold
comparator from subthreshold to suprathreshold, so the additive noise worsens detection
performance all the way.
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Figure 2. The Per versus additive noise intensity A for various threshold
levels (u = 0.5, 2, 4, 8, 16) with fixed multiplicative noise intensity M , (a)
M = 1; (b) M = 10; (c) M = 100

3.2.2. Fixed additive noise intensity A. As shown in Figure 3, when the signal arises in
the shape of suprathreshold (u = 0.5), detection performance inhibition was continuously
observed by noises; when the signal locates in subthreshold (u = 2, 4, 8, 16), appropriate
multiplicative noise can improve detectability, which is typical SR. In association with
Figure 3(a) and Figure 3(b), we learn that the EDP Per sharply declines at first (for the
weak multiplicative noise) and eventually approaches 0.25 when the fixed additive noise
intensity is small (A = 0.001, 1), which can be obtained by Equation (12) through the

limit method, given as lim
A→0

M→+∞

∑
1
2
− 1

4

∣∣∣∣erf ( u√
2A

)
−erf

(
u−1√

2(M2+A2)

)∣∣∣∣= 1
4
, u ≥ 1.

It also reveals that the larger the threshold level is, the larger the added noise is needed.
As a result, added multiplicative noise is more sensitive in small threshold scenarios. Fig-
ure 3(c) (A = 10) shows only larger multiplicative noise intensity M can gain a remarkable
reduction of EDP, and the decreasing tendency of the EDP curve is significant in large
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Figure 3. The Per versus multiplicative noise intensity M for various
threshold levels (u = 0.5, 2, 4, 8, 16) with fixed additive noise intensity A,
(a) A = 0.001; (b) A = 1; (c) A = 10
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Figure 4. The Per versus additive noise intensity A for various array num-
bers (N = 1, 2, 4, 8, 16) with suprathreshold (u = 0.5) and fixed multiplica-
tive noise intensity M , (a) M = 1; (b) M = 10; (c) M = 100

threshold scenarios. When injecting the equivalent of multiplicative noise intensity, noise-
enhanced detectability in Figure 3(c) is inferior to Figure 3(a) and Figure 3(b). It is
demonstrated that additive noise intensity should not be too large in inducing SR.

3.3. The effect of array N . For the case of parallel sensor networks, Figures 4 to
8 illustrate that for different threshold levels u, the EDP Per versus the additive noise
intensity A (or multiplicative noise intensity M) when fixing multiplicative noise intensity
M (or additive noise intensity A).

3.3.1. Fixed multiplicative noise intensity M . Figure 4 gives that when the signal is
suprathreshold (u = 0.5), for the fixed multiplicative noise intensity (M = 1, 10, 100), the
increase of additive noise intensity A always inhibits detection performance, i.e., SR ef-
fect is invalid at this moment. Figure 5(a) shows that when the signal is subthreshold
(u = 5), the EDP curves exhibit a significant decline with the increase of additive noise
intensity A in the small multiplicative noise case, i.e., SR appears; Figure 5(b) and Figure
5(c) illustrate when the multiplicative noise intensity M is larger, the addition of addi-
tive noise plays an inhibitory effect on detection. Consequently, the appropriate selection
of threshold level, multiplicative noise intensity M and additive noise intensity A has a
crucial role in triggering SR.

3.3.2. Fixed additive noise intensity A. Figure 6 brings out that the SR phenomenon
does not take place; however, with the increase of N , the minimum value of EDP Per
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Figure 5. The Per versus additive noise intensity A for various array num-
bers (N = 1, 2, 4, 8, 16) with subthreshold (u = 5) and fixed multiplicative
noise intensity M , (a) M = 1; (b) M = 10; (c) M = 100
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Figure 6. The Per versus multiplicative noise intensity M for various array
numbers (N = 1, 2, 4, 8, 16) with suprathreshold (u = 0.5) and fixed addi-
tive noise intensity A, (a) A = 0.001; (b) A = 1; (c) A = 10

is reducing, which results in improving detection performance. In Figure 6(c), the two
curves (N = 1 and N = 2) almost overlap, and the value of Per has greatly increased in
comparison to Figure 6(a) and Figure 6(b). We also found that large additive noise
intensity A can seriously deteriorate detectability.

Comparing between Figure 4 with Figure 6, in the case of small threshold (u = 0.5),
when fixing an equal amount of multiplicative noise and additive noise (M,A = 1 and 10),
we observed that under A = 0 the EDP value Per is comparatively small in Figure 4(a)
and Figure 4(b); under M = 0 the EDP value Per is comparatively large in Figure 6(b)
and Figure 6(c). It indicates when adding the equivalent strength noise the influence of
additive noise on the system is greater than that of multiplicative noise. On the other
hand, multiplicative noise has better robustness.

Figure 7(a) and Figure 7(b) produce better SR efficacy than Figure 7(c). For the large
N , the EDP Per in Figure 7(a) and Figure 7(b) tend to 0 with the increase of multiplicative
noise, which shows the occurrence of SR is closely related with the additive noise intensity
A and the array number of PSN N .

By comparing Figure 5 with Figure 7, in the case of large threshold (u = 5), when fixing
equivalent multiplicative noise and additive noise (M,A = 10), noise always deteriorates
detection performance in Figure 5(b), and the downward trends of the EDP in Figure
7(c) exhibit SR and also improve the signal detection. Therefore, multiplicative noise is
more effective than additive noise in stimulating SR at present.
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Figure 7. The Per versus multiplicative noise intensity M for various array
numbers (N = 1, 2, 4, 8, 16) with subthreshold (u = 5) and fixed additive
noise intensity A, (a) A = 0.001; (b) A = 1; (c) A = 10
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Figure 8. The Per versus multiplicative noise intensity M for various array
numbers (N = 1, 2, 4, 8, 16) with subthreshold (u = 20) and fixed additive
noise intensity A, (a) A = 0.001; (b) A = 1; (c) A = 10

The standard SR phenomenon is shown in Figure 8, namely, the EDP Per decreases with
the increase of M . Contrasting Figure 7 and Figure 8, it can be seen that both of them
have the similar SR efficacy in the context of small additive noise intensity (A = 0.001, 1);
when the additive noise intensity is large (M = 10), in contrast with Figure 7(c), Figure
8(c) shows that the EDP curves decrease even faster and also the minimum value of EDP
Per is even smaller. This is because that the increasing in threshold makes the signal
element locate more in subthreshold, adding noise is effective to improve signal detection
performance.

4. Extension and Discussion. Due to the CLT, the background additive noise in the
PSN can always be regarded as Gaussian form. The type of the external multiplicative
noise in the PSN is various, where different noise forms are presented in many different
contexts. For further exploration of multiplicative noise effect, we then consider the
external noise in the PSN to a uniform case. Every sensor node is independent of each
other and is subject to noisy signal with independent background additive ζi and external
multiplicative noise ϑi.

Figure 9(a) shows how external multiplicative uniform noise can improve signal detec-
tion of a single-sensor system. It is found that the background additive Gaussian noise
works in a certain range while the external multiplicative uniform noise is in the opti-
mization state as the level goes to infinity. Figure 9(b) shows that for a fixed additive
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Figure 9. (a) The Per versus multiplicative uniform noise intensity M and
additive Gaussian noise intensity A in the single-sensor system for u = 2.8
(b) The Per versus sensor threshold u and array of the PSN N for A = 1
and M = 10

Gaussian noise intensity A and multiplicative uniform noise intensity M , the three di-
mensional image of EDP Per as a function of two independent variables (N and u) in the
PSN. The larger the sensor threshold and the array of PSN are, the more apparent the
phenomenon of SR is. The effect of uniform case overmatches those of Gaussian case,
which is consistent with the description in [11]. By comparing Figure 9(b) with Figure
9(a), we can see that signal detection performance is significantly improved. So an array
of sensor nodes (PSN) is superior to a single-sensor system. It is worth noting that the
array number N does not need to be infinite. In addition, remarkable improvement will
be obtained in the PSN.

5. Conclusions. We have studied the SR effect of a PSN for binary signal detection,
where each sensor node is suffered from both background additive noise and external
multiplicative noise. Due to the central limit theorem, the background additive noise can
always be regarded as Gaussian sharp. However, the external multiplicative noise may
manifest as a number of forms in different scenarios. We first explored the Gaussian mul-
tiplicative noise case using a degraded PSN (a single-sensor system) and also provided the
EDP metric to characterize binary signal detection performance on PSN. It has been seen
that for a comparatively small sensor threshold, the impact of noises is negative. Hence,
the SR effect will vanish and no improvement of system performance will occur. Further,
we extended the single-sensor system to PSN with background and external Gaussian
noise. Results show that the noise-enhanced effect in the PSN significantly outperforms
that of single-sensor system. Arbitrary weak signal (i.e., high sensor thresholds) can be
amplified by multiplicative noise, thus introducing a robust method for signal detection
in noise involved. Finally, a uniform case of external multiplicative noise was studied,
which denotes a class of scenarios. To summarize, background additive noise and exter-
nal multiplicative noise can promote the signal transmission in PSNs. In future work, we
will examine the effect of two correlated noises on SR, thereby achieving effective control
of sensor systems.
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