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Abstract. In this paper, we deeply investigate the optimal tracking performance of
single-input single-output (SISO) networked control systems (NCSs) with data packet
dropout and bandwidth constraints. The communication network is characterized by
three parameters: the packet dropout, network bandwidth and channel noise. The ex-
plicit expression of the optimal tracking performance is obtained by applying the spectral
factorization technique. The obtained results demonstrate that the optimal performance
is influenced by the nonminimum phase zeros and unstable poles of the given plant, the
characters of the reference signal, packet dropout probability, the bandwidth and channel
noise of the communication channel. A typical example is given to illustrate the theoret-
ical results.
Keywords: Packet dropout probability, Bandwidth, Networked control systems, Un-
stable poles, Nonminimum phase zeros

1. Introduction. With the development of science and technology, networked control
systems (NCSs) have been widely used in various fields in recent years [1, 2]. At the
same time, NCSs have attracted much attention of scholars both at home and abroad.
While NCSs have brought some convenience, they also raise new challenges due to in-
herent network-limited bandwidth and channel capacity. Time-delay and packet dropout
can degrade the control performance of the NCSs, and even lead to the instability of
the system. Some research achievements have been obtained in NCSs. The stability of
networked system with packet dropouts and network bandwidth constraints has been in-
vestigated in [3]. In [4], the stability of NCSs and the design method of the controller
are studied with considering the influence of packet dropout and time delay. In [5], a
self-triggered sampling scheme (STS) is proposed for an NCS with consideration of data
losses and communication delays.

It is well known that the research on the NCSs is not limited to this. In [6], the optimal
modified performance of the single-input multiple-output (SIMO) linear time-invariant
(LTI) systems was investigated. The optimal modified tracking performance of multi-
input multi-output (MIMO) NCSs with bandwidth and channel noise constraints was
studied in [7]. The optimal tracking performance of MIMO discrete-time NCSs with band-
width and coding constraints was studied in [8], and the optimal tracking performance of
NCSs was obtained by using spectral factorization technique and partial fraction.

[3] investigated the optimal regulation performance of networked system with packet
dropouts and network bandwidth constraints. One-parameter controller was considered in
[3]. The obtained result shows the relationship among the stability of networked system,
structural characteristics of the given plant and communication network parameters. In
[7], the optimal modified tracking performance of multi-input multi-output networked
control systems with bandwidth and channel noise constraints was investigated, and in
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this paper, both one-parameter controller and two-parameters controller were discussed.
From this paper, the optimal modified performance is novel and reveals the relationship
between the plant characteristics, the communication parameters, the modified factor and
the optimal modified performance.

The main contributions of this paper are as follows. According to the existing re-
search results, we know that the influence factors of the optimal tracking performance
of the NCSs are the plant characteristics (unstable pole and nonminimum phase zero)
and network parameters (packet dropout, bandwidth, noise and so on). In this paper, we
studied the optimal tracking performance of NCSs with packet dropouts and bandwidth
constraints, and the model is SISO NCSs with packet dropout and bandwidth constraints
in the feedback channel, and the explicit expression of the optimal tracking performance
is obtained by applying the spectral factorization technique. Result shows that the opti-
mal tracking performance is dependent on the non-minimum phase zeros, unstable poles,
packet dropouts probability, bandwidth, channel noise of the communication channel and
the characters of the reference signal. The result may serve as guidelines for the design
of NCSs.

This paper is organized as follows. Section 2 introduces the problem formulation. The
optimal tracking performance of networked control systems with packet dropouts and
bandwidth constraints is studied in Section 3. A typical example is given to illustrate the
results in Section 4. The paper conclusion and future research directions are presented in
Section 5.

2. Problem Formulations. In this paper, the symbols involved are standard symbols.
For any vector u, we denote its conjugate transpose by uH . For random variables N ,
expectations are denoted as E {N}. The open right-half plane and the open left-half
plane are denoted by C+ := {s : Re(s) > 0} and C− := {s : Re(s) < 0}, respectively. L2

is defined as the Hilbert space, and it is well known that H2 and H⊥
2 are subspaces and

form an orthogonal pair of L2. Finally, let RH∞ denote the set of all stable, proper, and
rational transfer function.

We all know that the one-paremeter compensator is often difficult to meet the control
objectives or it is difficult to obtain high control precision, and the two-paremeter com-
pensator is more stable and better than that of the one-paremeter compensator, so we
discussed the two-paremeter compensator in this paper. We establish a simple model of
SISO NCSs as shown in Figure 1.

In Figure 1, [K1 K2] denotes the two-paremeter compensator, G denotes the plant
model, and r and y denote the reference input and reference output, respectively. The
communication network is characterized by three parameters: the packet dropout, net-
work bandwidth and channel noise. F models the bandwidth, dr models the packet
dropout, n models the channel noise, and the channel noise variance is σ2

2. We consider
that reference signal r is a random process, and reference input signal variance is σ2

1. The
signal r is uncorrelated with n in this paper.
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Figure 1. Networked control systems with packet dropout and bandwidth



ICIC EXPRESS LETTERS, VOL.11, NO.4, 2017 865

Assumption (description of dr): The signal dr can be expressed as a Bernoulli distri-
bution, namely

dr =

{
0 if the systems output is not successfully transmitted to the controller
1 if the systems output is successfully transmitted to the controller

the distribution probability for dr is: P {dr = 1} = 1− q, P {dr = 0} = q, 0 ≤ q < 1, and
q represents the packet dropout probability.

The tracking error of NCSs is e = r − y, and according to Figure 1, we can obtain

y = [rK1 + K2 (yFdr + n)] G (1)

Then

e = r − y = (1 − K1G) r + K2Gn − K2FGdry (2)

According to [7], it can obtain

Se

(
ejw
)

=
(1 − αK1 (ejw) G (ejw)) Sre (ejw) + K2 (ejw) G (ejw) Sne (ejw)

1 + (1 − q) G (ejw) F (ejw) K2 (ejw)
(3)

According to [9], we have

σ2
e =

∥∥∥∥ (1 − αK1G)

1 + (1 − q) GFK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ K2G

1 + (1 − q) GFK2

∥∥∥∥2

2

σ2
2 (4)

Define J := σ2
e , and then the optimal tracking performance is measured by the possible

minimal tracking error achievable by all possible linear stabilizing controllers (denoted by
K), determined as

J∗ = inf
K∈K

∥∥∥∥ (1 − αK1G)

1 + (1 − q) GFK2

∥∥∥∥2

2

σ2
1 +

∥∥∥∥ K2G

1 + (1 − q) GFK2

∥∥∥∥2

2

σ2
2 (5)

For the rational transfer function G, let G coprime factorization be given by

F (1 − q)G =
N

M
(6)

where M, N ∈ RH∞, and satisfy the Bezout identify

MX − NY = 1 (7)

where X,Y ∈ RH∞. It is well known that every stabilizing compensator K can be
characterized by Youla parameterization [10].

K = {K : K = [K1 K2] = (X − RN)−1 · [Q Y − RM ] , Q ∈ RH∞, R ∈ RH∞} (8)

It is also well known that a nonminimum phase transfer function could factorize a
minimum phase part and an all pass factor [11].

M = BpMm, N = (1 − q) LzNm (9)

where Bp and Lz are all-pass factors, Mm and Nm are the minimum phase parts, Lz

includes all non-minimum phase zeros zi (zi ∈ C+, i = 1, . . . , n) of the given plant, and
Bp includes all unstable poles pj (pj ∈ C+, j = 1, . . . , m) of the given plant. They are
defined as follows

Bp(s) =
m∏

j=1

s − pj

s + p̄j

, Lz(s) =
n∏

i=1

s − zi

s + z̄i

(10)
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3. Optimal Tracking Performance with Packet Dropouts and Bandwidth Con-
straints. Consider a linear time-invariant feedback control system over communication
channel with packet dropouts and bandwidth constraints depicted in Figure 1. According
to (4), (6)-(9), we can get

J =

∥∥∥∥1 − NQ

F (1 − q)

∥∥∥∥2

2

σ2
1 +

∥∥∥∥N(RM − Y )

F (1 − q)

∥∥∥∥2

2

σ2
2 (11)

According to (5) and (11), we can rewrite J∗

J∗ = inf
K∈K

(∥∥∥∥1 − NQ

F (1 − q)

∥∥∥∥2

2

σ2
1 +

∥∥∥∥N(RM − Y )

F (1 − q)

∥∥∥∥2

2

σ2
2

)
(12)

Theorem 3.1. For NCSs as shown in Figure 1, assume that the plant has many unstable
poles pj ∈ C+, j = 1, . . . , m, and non-minimum phase zeros zi ∈ C+, i = 1, . . . , n, the
optimal tracking performance can be expressed as

J∗ =
ns∑
i=1

2Re(zi)σ
2
1 + J11σ

2
2

where

J11 =
∑
i,j∈m

4Re(pj)Re(pi)

(p̄j + pi) b̄jbj

(
F−1(pj)(1 − q)−1L−1

z (pj)
) (

F−1(pj)(1 − q)−1L−1
z (pj)

)H
.

Proof: In order to calculate the J∗, we denote

J∗
1 = inf

Q∈RH∞

∥∥∥∥1 − NQ

F (1 − q)

∥∥∥∥2

2

σ2
1, J∗

2 = inf
R∈RH∞

∥∥∥∥N(RM − Y )

F (1 − q)

∥∥∥∥2

2

σ2
2 (13)

According to (6), (7) and (9), we can get

J∗
1 = inf

Q∈RH∞
∥1 − LzNmQ∥2

2 σ2
1 (14)

Because Lz is the all pass factors, we can rewrite J∗
1 as

J∗
1 = inf

Q∈RH∞

∥∥(L−1
z − 1

)
+ 1 − NmQ

∥∥2

2
σ2

1

Because (L−1
z − 1) is in H⊥

2 , and (1 − NmQ) is in H2, conversely,

J∗
1 = σ2

1

(
L−1

z − 1
)

+ σ2
1 inf

Q∈RH∞
∥1 − NmQ∥2

2

According to [12], we have (
L−1

z − 1
)

=
ns∑
i=1

2Re(zi) (15)

Because Nm is the minimum phase parts, Q ∈ RH∞, then σ2
1 inf

Q∈RH∞
∥1 − NmQ∥2

2 = 0.

Hence,

J∗
1 =

ns∑
i=1

2Re(zi)σ
2
1

According to the same method as J∗
1 , we can obtain

J∗
2 = inf

R∈RH∞

∥∥B−1
p NmY F−1 − F−1RMmNm

∥∥2

2
σ2

2 (16)

According to the partial factorization and (10), we have

B−1
p NmY F−1 =

m∑
j=1

s + p̄j

s − pj

Nm(pj)Y (pj)F
−1(pj)

bj

+ R1 (17)
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We can rewrite J∗
2 as

J∗
2 = inf

R∈RH∞

∥∥∥∥∥
m∑

j=1

(
s + p̄j

s − pj

− 1

)
Nm(pj)Y (pj)F

−1(pj)

bj

+
Nm(pj)Y (pj)F

−1(pj)

bj

+ R1 − F−1(pj)RNm(pj)Mm(pj)

∥∥∥∥2

2

σ2
2.

Because Mm and Nm are the minimum phase parts, and at the same time R1 ∈ RH∞,
R ∈ RH∞, bj =

∏
i∈N
i ̸=j

pi−pj

p̄i+pj
, by choosing appropriate value, we can make

inf
R∈RH∞

∥∥∥∥Nm(pj)Y (pj)F
−1(pj)

bj

+ R1 − F−1(pj)RNm(pj)Mm(pj)

∥∥∥∥2

2

= 0.

and then

J∗
2 = inf

R∈RH∞

∥∥∥∥∥
m∑

j=1

(
s + p̄j

s − pj

− 1

)
Nm(pj)Y (pj)F

−1(pj)

bj

∥∥∥∥∥
2

2

σ2
2

=

∥∥∥∥2Re(pj)

s − pj

Nm(pj)Y (pj)F
−1(pj)

bj

∥∥∥∥2

2

σ2
2

From (7) and M(pj) = 0, we can get

Y (pj) = −N−1 = −(1 − q)−1L−1
z (pj)N

−1
m (pj)

and then

J∗
2 =

∑
i,j∈m

4Re(pj)Re(pi)

p̄j + pi

1

b̄jbj

(
F−1(pj)(1 − q)−1L−1

z (pj)
)(

F−1(pj)(1 − q)−1L−1
z (pj)

)H
σ2

2

=
∑
i,j∈m

4Re(pj) Re(pi)

(p̄j + pi)b̄jbj

(
F−1(pj)(1 − q)−1L−1

z (pj)
)(

F−1(pj)(1 − q)−1L−1
z (pj)

)H
σ2

2

We have

J∗ =
ns∑
i=1

2Re(zi)σ
2
1 +

∑
i,j∈m

4Re(pj)Re(pi)

(p̄j + pi) b̄j · bj

·

(
F−1(pj)(1 − q)−1L−1

z (pj)
) (

F−1(pj)(1 − q)−1L−1
z (pj)

)H
σ2

2

The proof is now completed.

4. Numerical Example. Consider the unstable plant model described by G(s) =
s−k

(s−1)(s+0.3)
. It has a nonminimum phase zero at s = k, and the unstable pole is located at

p = 1. The LTI filters are used to model the finite bandwidth F (s) of the communication,
and the filters are chosen to be low-pass Butterworth with different values of 10, 30, 100

F1 =
10

p + 10
, F2 =

30

p + 30
, F3 =

100

p + 100
.

If q = 0.5, from Theorem 3.1, we can calculate the J∗

J∗ = 2k + 2

(
2

F

k + 1

k − 1

)2

The optimal tracking performance of the NCSs with different unstable poles is shown
in Figure 2. It can be seen from Figure 2 that the optimal tracking performance has
been degraded when the bandwidth decreases. It can also be seen that the tracking
performance tends to be infinity when the unstable poles move closer to the non-minimum
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Figure 2. Optimal performance of NCSs with bandwidth
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Figure 3. Optimal performance of NCSs with packet dropout ratio

phase (NMP) zeros. It is clear that the optimal tracking performance of the NCSs will
be seriously degraded when the bandwidth F decreases.

If F = 1, the packet dropout ratio q for three different values of 0.1, 0.5, 0.8, from
Theorem 3.1, we can calculate the J∗

J∗ = 2k + 2

(
1

1 − q

k + 1

k − 1

)2

The optimal tracking performance of the NCSs with different packet dropout ratio q is
shown in Figure 3.
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Figure 4. Optimal performance of NCSs with packet dropout and unsta-
ble poles

The same situation can be observed from Figure 3, which shows the optimal perfor-
mance for different values of q. It is clear that the optimal tracking performance will
increase with the increase of q.

If F = 1, and q is unknown value, from Theorem 3.1, we can calculate the J∗

J∗ = 2k + 2

(
1

1 − q

k + 1

k − 1

)2

In the influence of different packet dropout ratio q and unstable poles p, we can get the
optimal tracking performance of NCSs like Figure 4.

The optimal tracking performance of NCSs with different packet dropout ratios and
unstable poles are shown in Figure 4. It can be seen from Figure 4 that the optimal
tracking performance has been degraded when the packet dropout increases. It can also
be seen that the tracking performance tends to be infinity when the unstable poles move
closer to the non-minimum phase (NMP) zeros.

5. Conclusion. In this paper, the optimal tracking performance of NCSs based on packet
dropouts and bandwidth constraints is studied. The packet dropout and bandwidth
limitations that exist in the feedback channel are considered. An explicit expression for
the optimal performance of NCSs is obtained by using a method of spectral factorization
technique. The obtained results show that the optimal performance of NCSs is influenced
by unstable poles, packet dropouts and bandwidth constraints. A typical example is given
to illustrate the theoretical results.

In this paper, we studied with the SISO NCSs with data packet dropout and bandwidth
constraints, and possible future extensions to this work include study on MIMO, time
delay and these problem.
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