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Abstract. Traditional method of analysis on encrypted data is to get the plaintexts
at first, which issues some inevitable security threats in the real life. A solution to this
problem is functional encryption (FE) that enables direct computation on encrypted data.
This novel paradigm breaks all-or-nothing access model. In this work, we discuss how
to construct a succinct lattice-based functional encryption scheme by linear FE (short
as LinFE) for inner products and show some new perspectives on the applications of it,
such as information filtering, technology outsourcing and data analysis.
Keywords: Functional encryption, Lattice, Learning with errors, Analysis on encrypted
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1. Introduction. The advent of cloud computing and the resulting demand for privacy-
preserving require that we have to provide the new encryption technologies. Over the past
decade, cryptographers have put forth some novel paradigms for public-key encryption
(PKE): attribute-based encryption (ABE), predicate encryption (PE) and functional en-
cryption (FE), etc. Especially, functional encryption breaks all-or-nothing access model,
in which a secret key enables a user to learn a specific function of the encrypted data
and nothing else. Obviously, the notion of functional encryption can be regarded as an
“epitome” of the traditional PKE. Functional encryption provides both fine-grained ac-
cess and computing on encrypted data, which has significantly advanced the state of the
art in the field of cryptography.

According to the notion of functional encryption formalized by Boneh et al. [1], many
constructions of functional encryption were proposed. Most of them focus on construct-
ing FE for restricted classes of functions, such as point functions (or IBE) [2,3], threshold
functions [4], Boolean formulas [5], inner product functions [6,7] and even regular lan-
guages [8]. However, the well-known genuine schemes for general circuits relied on indis-
tinguishability obfuscation [9,10], which made them rely on either an exponential number
of assumptions or a polynomial set of assumptions with exponential loss in the security
reduction. In recent works [7,11], the problem of lattice-based FE for bounded collusions
has been resolved without strong assumptions, such as indistinguishability obfuscation,
and multilinear map.

However, the construction in [11] also has some disadvantages. In order to prevent
an attacker getting the corresponding combination modulo p of master key components,
the sateful FE scheme [11] requires that adversary only queries secret keys for some
independent vectors. This assumption substantially underestimates the ability of the
adversary. Inspired by Agrawal et al.’s work [11], we present a stateless FE for inner
products that can be extended to a bounded collusion functional encryption for all circuits.
In addition, the plaintext in our succinct FE scheme is not a vector that suffices for many
concrete applications.
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2. Preliminaries.

2.1. Lattice. Let B = [b1, . . . ,bm] ∈ Rm×m be an m × m matrix whose columns are
linearly independent vectors b1, . . . ,bm ∈ Rm. The m-dimensional full-rank lattice Λ
generated by B is the set

Λ :=

{
y ∈ Rm s.t. ∃s ∈ Zm, y = Bs =

m∑
i=1

sibi

}
.

Definition 2.1. For a prime q, A ∈ Zn×m and u ∈ Zn
q define:

Λ⊥
q := {e ∈ Zm|Ae = 0(modq)}, Λu

q := {e ∈ Zm|Ae = u(modq)}.

Theorem 2.1. [3]. Let q ≥ 2 be odd and m := ⌈6n log q⌉. There is a probabilistic
polynomial time (PPT) algorithm TrapGen(q, n) that outputs a pair (A ∈ Zn×m

q , TA ∈
Zm×m) satisfying

∣∣∣∣∣∣T̃A

∣∣∣∣∣∣ ≤ O(
√

n log q) and
∣∣∣∣TA

∣∣∣∣ ≤ O(n log q) with all but negligible in
n.

We need to sample short vectors in Λu
q (A) for some u in Zn

q and define the following
algorithms.

Algorithm SamplePre (A, TA, u, σ):
Inputs:

a rank n matrix A in Zn×m
q ,

a “short” basis TA of Λ⊥
q (A) and a vector u ∈ Zn

q ,

a Gaussian parameter σ ≥
∣∣∣∣∣∣T̃A

∣∣∣∣∣∣ω (√
logm

)
.

Output: a vector x ∈ Λu
q (A) sampled from a distribution statistically close to DΛu,σ,

whenever DΛu,σ denotes Discrete Gaussians (more details see [3]).

Theorem 2.2. [3]. Let q ≥ 2 and A be a matrix in Zn×m
q with m > n. Let TA be a basis

for Λ⊥
q (A) and σ ≥

∣∣∣∣∣∣T̃A

∣∣∣∣∣∣ω (√
log m

)
. Then for u ∈ Zn

q :

Pr
[
x ∼ DΛu

q (a),σ : ||x|| >
√

mσ
]
≤ negl(n).

2.2. The LWE hardness assumption. The learning with errors (LWE) problem, a
classic problem on lattice, was first defined by Regev [12]. The security of our scheme is
based on the hardness of this problem.

Definition 2.2. For a positive integer n, a prime q and a distribution χ over Zq, a
(Zq, n, χ)-LWE problem instance consists of access to an unspecified challenge oracle O,
being, either a noisy pseudo-random sampler Os carrying some constant random secret
key s ∈ Zn

q , or, a truly random sampler O$, whose behaviors are respectively as follows:

• Os: outputs samples of the form

(ui, vi) =
(
ui,u

T
i s + xi

)
∈ Zn

q × Zq,

where s ∈ Zn
q is a uniformly distributed vector which keeps persistent across invocations,

xi ∈ Zq is a fresh sample form χ, and ui is uniformly sampled from Zn
q .

• O$: outputs samples from Zn
q × Zq uniformly at random.

We call that an algorithm B decides the (Zq, n, χ)− LWE problem if

Adv
(Zq ,n,χ)−LWE
B =

∣∣ Pr
[
BOs = 1

]
− Pr

[
BO$ = 1

] ∣∣
is non-negligible for a random s ∈ Zn

q .
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2.3. Functional encryption. A functional encryption [1] scheme for f consists of four
algorithms, FE = (FE.Setup; FE.Keygen; FE.Enc; FE.Dec) which are defined as follows.

• FE.Setup
(
1λ

)
. It takes as input the unary representation of the security parameter

and outputs the master public and secret keys (mpk; msk).
• FE.Keygen(msk; f). It takes as input the master secret key msk and a circuit f and

outputs a corresponding secret key skf .
• FE.Enc(mpk; x). It takes as input the master public key mpk and message x and

outputs a ciphertext Ct.
• FE.Dec(skf ; Ct). It takes as input the secret key skf and a ciphertext Ct and outputs

f(x).

Definition 2.3. A functional encryption scheme FE is correct if for all f ∈ F and all
x ∈ X.

Pr

[
(mpk, msk)← FE.Setup(1λ);

FE.Dec(FE.keygen(msk, f), FE.Enc(mpk, x)) ̸= f(x)

]
= negl(λ).

3. The Proposed Functional Encryption Scheme.

3.1. LinFE for inner products from LWE. LinFE.Setup
(
1λ, 1l

)
. Given the security

parameter λ and the length of plaintext l, it proceeds as follows.

• Use the algorithm TrapGen to generate a random n×m matrix A with a full-rank
m-vector set TA ⊆ Λ⊥

q (A).

• Select a uniformly random matrix U ∈ Zn×l
q .

• Output the public parameters mpk and master secret key msk given by

mpk = (A,U), msk = TA.

LinFE.KeyGen(y, msk). Given the master secret key msk and predicate vector y ∈ Zl
p,

it outputs a secret key sk = {e← SamplePre(A, TA, Uy, σ)} ∈ Zm
q .

LinFE.Enc(mpk, x). Given the public parameters mpk and a message x ∈ Zl
p, it

computes ciphertext Ct as follows.

• Choose a noise vector ε0 ← χm, ε1 ← χl, where χ denotes noise distribution.
• Choose a uniformly random vector s ∈ Zn

q .

• Compute c0 = A⊤s + ε0 and c1 = U⊤s + ε1 +

⌊
q

mp2

⌋
x ∈ Zl

q.

• Return the ciphertexts Ct = (c0, c1) ∈ Zm+l
q .

LinFE.Dec(sk, Ct). Given the receiver’s sk and the ciphertexts Ct, it computes the
evaluation µ′ =< y, c1 > − < e, c0 > mod q and outputs the value µ that minimizes∣∣∣⌊ q

mp2

⌋
µ− µ′

∣∣∣.
Correctness. For all (mpk,msk) ← LinFE.Setup

(
1λ

)
, all x,y ∈ Zl

p, sk ← LinFE.
KeyGen and Ct = LinFE.Enc, we have that

µ′ = < y, c1 > − < e, c0 > mod q

≈ y⊤
(

U⊤s + ε1 +

⌊
q

mp2

⌋
x

)
− e⊤ (

A⊤s + ε0

)
mod q

=

⌊
q

mp2

⌋
y⊤ · x +

(
y⊤ε1 − e⊤ε0

)︸ ︷︷ ︸
low-norm-noise ∈ Zp

mod q.

For appropriate parameters [3,11], the noise bound could be less than
⌊

q
4mp2

⌋
, which

suffices to guarantee decryption correctness.
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Table 1. A comparison with the current available scheme [11]

scheme mpk msk sk ciphertext state adversary

[11]
O(n2logq) +

O(nllogq)
O(nl) O(n) + O(l) O(n) + O(l) stateful bounded

Ours
O(n2 log q) +

O(nl)
O(n2 log2 q) O(n log q) O(n log q) + O(l) stateless regular

*Note that our msk and sk are independent of plaintext and the assumed adversary is stronger
than [11] at the (slight) expense of the magnitude of other parameters i.e., O(logq).

Efficiency analysis. In Table 1, l denotes the length of plaintext and n denotes the row
of matrix A. Bounded adversary means that he/she only queries secret keys for some
controlled vectors.

Semantic security. Notice that the above scheme based on Regev PKE scheme is IND-
FE-CPA under LWE assumption. The proof of our scheme is analogous to that in [12].
Due to space limitations, we omit the details.

3.2. FE for regular circuit. In this section, we describe how to convert our LinFE into
an FE scheme for circuits. We refer the reader to [13] for more details about randomized
encodings (RE).

FE.Setup
(
1λ

)
. It invokes LinFE.Setup and returns (mpk, msk).

FE.KeyGen(msk, f). Given the master secret key msk and a circuit f , it works as
follows.

• Encode f by a sequence of degree 3 polynomials P1, . . . , Pk.
• Linearize each polynomial Pi and let Pi

′ be its vector of coefficients, such as P ′
i =

(a, b, c, d).
• Output FE.skf = {ski = LinFE.KeyGen(msk, P ′

i )}i∈[k].

FE.Enc(mpk, x). Given the master public key and plaintext x, it outputs the ciphertext
Ctx = LinFE.Enc(x3, x2, x, 1).

FE.Dec(mpk, skf , CTx). Given a secret key skf and ciphertext Ctx for message x, it
works as follows.

• Compute {Pi(x)}i∈[k] = {LinFE.Dec(Ctx, ski)}i∈[k].
• Run the decoder for the randomized encoding to recover f(x).

Semantic security and Correctness. We refer the reader to [14] the definition of no-
adaptive simulation (NA-SIM) secure.

Theorem 3.1. Let the underlying scheme LinFE and RE be NA-SIM, for any family F
of polynomial-size circuits, the FE scheme described above is q-AD-SIM-secure against a
bounded number of collusions.

We briefly sketch the proof. Let RE.Sim and LinFE.Sim be the simulator guaranteed
by the security of RE and LinFE scheme respectively. Given secret key queries fi, the
corresponding secret keys FE.ski and the values fi(x) for i ∈ [q∗], q∗ ≤ q, our simulator
FE.Sim works as follows (more details see [11,15]).

• For each i ∈ [q∗], invoke RE.Sim (fi(x)) to learn (P i
1(x), . . . , P i

k(x)).
• Output Ctx = LinFE.Sim

(
{P i

1(x), . . . , P i
k(x), FE.ski}i∈[q∗]

)
.

Obviously, the correctness of our FE scheme follows from the correctness of LinFE and
RE.

4. New Perspectives on Applications. Today public key encryption is an invaluable
tool and has been used in secure web communication (e.g., HTTPS and SSL), voice traffic,
storage systems, etc. Functional encryption can be viewed as a generalization of many
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advances in public-key encryption over the past decade, in which the sender can determine
who can decrypt a specific ciphertext and how much information receivers can get about
the plaintext. Let the function f be an identity function such that functional encryption
is actually equal to general PKE. Here, we discuss the three examples, closely related to
our research in functional encryption.

4.1. Information filtering. Since the amount of data (good or bad) in our world has
been exploding, information filtering is an indispensable technology to prevent “spam”
flood. However, lots of information is encrypted in network or cloud, which incurs some
problems for information filtering. In addition, the ciphertexts are public, which can be
intentional tampered. To ensure network security, some regulators have to momently
monitor the encrypted data, but cannot snoop the personal private data. Functional
encryption provides a great solution. In this model, a data owner will leverage partial
information, i.e., f(x), where the function f should be regulated or public and cannot
reveal anything about the data itself. This cryptosystem can be embedded in many
instantiations, such as search engine tool, and email filtering. Note that description about
spam filtering in [13] is incomplete because the recipient cannot obtain message (also can
get f(x) from functional encryption). A simple solution is to add another traditional
PKE, which is a real encryption system. Here FE scheme is just a testing tool (Figure 1).

Figure 1. A simplified test tool of information filtering

4.2. Technology outsourcing. Suppose that two companies are business partners and
they need to provide technical support for each other. However, they are not willing to
reveal the commercial secret, i.e., their core technology. For instance, company A owned
the kernel code x needs to provide company B with related service about this code. In
this case, there is a trusted authority who can generate a derived secret key skf associated
with f . Company A holding skf can compute f(x) from an encryption of any data x,
where f(x) is the result of running this kernel code. It should be noted that f must be
well-designed by the owner; otherwise some attackers may obtain the secret x.

4.3. Data analysis. We take the example of smart grid privacy protection. Smart grids
not only bring numerous advantages in terms of energy consumption reduction, but also
lead to an enhancement in the ability of monitoring. Such management might reveal their
personal habits and behavior, which electrical appliances they are using at each moment,
whether they are at home or not, and so on. Consequently, customer privacy has to be
protected while at the same time smart meters can send detailed energy measurement
reports on customers. In our scenario, an energy supplier (ES) receives electricity mea-
surements (encrypted individual values Ct) from smart meters. It can obtain secret key
skf for desired but constrained f from the key distribution center (KDC) and then de-
crypt the ciphertext to get f(x). At last, ES will adjust the electrical power system by
the evaluation of f(x).
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5. Conclusions and Open Problems. In this paper, a stateless FE for inner products
is proposed based on LWE assumption. Then a simple method is introduced to convert
the proposed scheme into an FE scheme for regular circuit based on randomized encod-
ings. Furthermore, we discuss some new perspectives on the applications of the proposed
schemes, such as information filtering, technology outsourcing and secret data analysis.
However, the construction of f may be a block for practical application scenarios in the
real life. In addition, how to construct practical FE scheme for randomized functionalities
without making any additional strong assumptions is still an open problem.
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