
ICIC Express Letters ICIC International c⃝2017 ISSN 1881-803X
Volume 11, Number 4, April 2017 pp. 893–898

SINGLE AND PARALLEL MACHINE SCHEDULING TO MINIMIZE
THE TOTAL STRETCH

Jang Rae Lee1 and Suk-Hun Yoon2,∗

1Department of Industrial Engineering
Seoul National University

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
future33@nate.com

2Department of Industrial and Information Systems Engineering
Soongsil University

369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea
∗Corresponding author: yoon@ssu.ac.kr

Received October 2016; accepted January 2017

Abstract. We consider scheduling problems in a single machine and parallel machines
to minimize the total stretch. The stretch of a job is defined as the ratio of the flow time
to its processing time. When jobs have different release times, the problem of minimizing
the total stretch is NP-complete even for a single machine. In this paper, we assume
that the release times of jobs are all zeros. We provide some optimality conditions and
propose a polynomial time algorithm for the problems.
Keywords: Non-preemptive scheduling, Parallel machines, Total stretch, Polynomial
time algorithm

1. Introduction. Service providers frequently offer different levels of services to special
customers. For instance, some counters in a supermarket are reserved for small purchase
customers to reduce average waiting times by accelerating the check-out process. The
stretch is defined as the ratio of a job flow time to its processing time, which relates the
customers’ waiting times to their demands [1].

Glass and Kellerer [2] have provided an algorithm with worst-case performance of 3/2
when processing times are restricted to 1 and 2 in parallel identical machines to min-
imize the makespan. Azar et al. [3] have presented an online algorithm to minimize
the makespan with a competitive ratio ⌈log2 m⌉ + 1 for m machines. Legrand et al. [4]
have shown that scheduling problems to minimize the total stretch in unrelated parallel
machines under the divisible load are NP-complete. Muthukrishnan et al. [5] have pre-
sented online scheduling to minimize the total stretch. They provide lower bounds on the
competitive ratio of online algorithms for single and parallel machines.

Xu and Nagi [6] have provided a mixed integer programming problem to minimize
makespan and total weighted completion time based on the properties of an optimal
schedule. Zhang et al. [7] have addressed the total weighted completion time minimization
where there are m identical resources available at each time unit. They have provided a
greedy algorithm with an approximation ratio 2.

In this paper, we consider scheduling problems to minimize the total stretch in a single
machine and parallel machines. The rest of this paper is organized as follows. In Section 2,
we provide assumptions and notations and define our models. Some dominant properties
are developed. Based on these properties, we propose a polynomial time algorithm for
the problems in Section 3. Finally, we provide summary and conclusions in Section 4.

893

894 J. R. LEE AND S.-H. YOON

2. Dominant Properties for Single Machine Scheduling. Let J = {J1, J2, . . . , Jn}
be the job set. For job j, let pj be the processing time of job Jj, rj its release time, aj its
starting time, Cj its completion time, and Fj its flow time. The stretch of job Jj can be
defined as sj = (Cj − rj)/pj, equivalently sj = Fj/pj. In this paper, the release times of
all jobs are assumed to be zeros and therefore, sj = Cj/pj.

Scheduling problems can be denoted by a triplet α|β|γ [8]. The α field describes machine
environments, β processing characteristics and constraints, and γ performance measures.
Using this notation, we denote our problems as 1 ||

∑n
j=1 sj and Pm ||

∑n
j=1 sj, respec-

tively.

Lemma 2.1. The stretch of a job can be represented of the starting time and processing
time of the job.

Proof: sj =
Cj

pj
=

aj+pj

pj
=

aj

pj
+ 1. �

Lemma 2.2. There exist no unforced idle times in an optimal schedule.

Proof: If a schedule has idle times, the total stretch of the schedule can be reduced by
left shift of jobs. �

Theorem 2.1. The shortest processing time first (SPT) rule is optimal.

Proof: By contradiction. Suppose a schedule σ, which is not SPT, is optimal. Let
job Ji be followed by job Jj such that pi > pj (Figure 1(a)). Assume job Ji starts its
processing at time t. By interchanging jobs Ji and Jj, a new schedule σ′ is obtained in
Figure 1(b).

In σ, job Ji starts its processing at time t and is followed by job Jj. While in σ′, job
Jj starts its processing at time t and is followed by job Ji. All other jobs remain in their
original positions. The total stretch of the jobs processed before and after jobs Ji and
Jj is not affected by this interchange. Thus, we only consider the difference of the total
stretch of jobs Ji and Jj in σ and σ′.

In σ,

si + sj =

(
t

pi

+ 1

)
+

(
t + pi

pj

+ 1

)
= t

(
1

pi

+
1

pj

)
+

pi

pj

+ 2

In σ′,

s′i + s′j =

(
t + pj

pi

+ 1

)
+

(
t

pj

+ 1

)
= t

(
1

pi

+
1

pj

)
+

pj

pi

+ 2

It is easily verified that if pi > pj, the sum of the stretch under σ′ is strictly less than
under σ. This completes the proof. �

Figure 1. A pairwise interchange of jobs Ji and Jj

ICIC EXPRESS LETTERS, VOL.11, NO.4, 2017 895

3. Polynomial Time Algorithm for Parallel Machine Scheduling. Let the job
set J be partitioned into m disjoint sets such as {A1, A2, A3, . . . , Am}, where Ai is the
subset of J assigned to machine Mi. A feasible schedule on m parallel machines is σ =
{σ1, σ2, . . . , σm}, where σi is a feasible schedule, which is constructed by Ai.

Lemma 3.1. There exist no unforced idle times on each machine in an optimal schedule.

Lemma 3.2. An optimal job sequence on each machine is SPT.

Lemma 3.3. If starting time of a job Jj is changed by ∆t, the stretch is changed by ∆t
pj

.

Proof: Suppose that starting time of job Jj is changed from aj to aj +∆t. By Lemma

2.1, the stretch of the job is changed from
aj

pj
+ 1 to

aj+∆t

pj
+ 1. Therefore, the stretch

change is ∆t
pj

. �
Theorem 3.1. In an optimal schedule, if pi < pj, then ai ≤ aj.

Proof: By contradiction. Suppose that a schedule σ is optimal, in which pi < pj and
ai > aj. Then, jobs Ji and Jj must be assigned on different machines by Lemma 3.2. Let
job Ji be assigned on machine Mk and job Jj on machine Ml. Let A and B be the set of
jobs that are processed before and after job Ji, respectively. Let C and D be the set of
jobs that are processed before and after job Jj, respectively (Figure 2(a)).

The total stretch of the schedule σ is

s =
∑

t∈A
st + si +

∑
t∈B

st +
∑

t∈C
st + sj +

∑
t∈D

st.

Consider two cases:
∑

t∈B
1
pt

<
∑

t∈D
1
pt

and
∑

t∈B
1
pt

≥
∑

t∈D
1
pt

Case 1.
∑

t∈B
1
pt

<
∑

t∈D
1
pt

.

Interchange Ji and Jj (Figure 2(b)). The stretches of A and C are not changed. Then
the difference of the total stretch after interchange is calculated below:

∆s = ∆si +
∑

t∈B
∆st + ∆sj +

∑
t∈D

∆st

=
aj − ai

pi

+ (pj − pi)
∑

t∈B

1

pt

+
ai − aj

pj

+ (pi − pj)
∑

t∈D

1

pt

(by Lemma 3.3)

= (ai − aj)

(
− 1

pi

+
1

pj

)
+ (−pi + pj)

(∑
t∈B

1

pt

−
∑

t∈D

1

pt

)
< 0.

Case 2.
∑

t∈B
1
pt

≥
∑

t∈D
1
pt

.

Interchange Ji and B with Jj and D (Figure 2(c)). The stretches of A and C are not
changed. Then the difference of the total stretch after interchange is calculated below:

∆s = ∆si +
∑

t∈B
∆st + ∆sj +

∑
t∈D

∆st

=
aj − ai

pi

+ (aj − ai)
∑

t∈B

1

pt

+
ai − aj

pj

+ (ai − aj)
∑

t∈D

1

pt

= (ai − aj)

(
− 1

pi

+
1

pj

)
+ (ai − aj)

(
−

∑
t∈B

1

pt

+
∑

t∈D

1

pt

)
< 0.

In both cases, the total stretch can be decreased. This completes the proof. �
Definition 3.1. Let J = {J1, J2, . . . , Jn} be a set of jobs, in which jobs are arranged in
a nondecreasing order of processing times, that is p1 ≤ p2 ≤ · · · ≤ pn. Construct a job

set Âi by assigning job Jj to machine Mi, where j ≡ i (mod m), for i = 1, 2, . . . , m,

j = 1, 2, . . . , n. Sequence σ̂i is determined by SPT rule for jobs in Âi. Then, the circular

SPT schedule is σ̂ = {σ̂1, σ̂2, . . . , σ̂m}, where σ̂i =
⟨
Ji, Jm+i, J2m+i, . . . , J⌊n−i

m ⌋m+i

⟩
.

896 J. R. LEE AND S.-H. YOON

Figure 2. Interchanging jobs Ji and Jj

Definition 3.2. The load li of machine Mi is the total job processing times assigned to
the machine.

Lemma 3.4. For the job Jk that is assigned last in the schedule σ̂ = {σ̂1, σ̂2, . . . , σ̂m}, the
difference of two machine loads is less than or equal to the processing time of the last job,
i.e., |li − lj| ≤ pk, 1 ≤ i ̸= j ≤ m.

Proof: Let 1 ≤ i < j ≤ m. The difference in number of jobs in two sequences σ̂i and

σ̂j is not greater than 1, i.e., 0 ≤
∣∣∣Âi

∣∣∣ − ∣∣∣Âj

∣∣∣ ≤ 1. Let the last job in the sequences σ̂i

and σ̂j be Js and Jt, respectively. Then, 0 ≤ lj − li ≤ pt (Figure 3(a)) or 0 ≤ li − lj ≤ ps

(Figure 3(b)). Since ps ≤ pk and pt ≤ pk, |li − lj| ≤ pk. �

Corollary 3.1. In the schedule σ̂ = {σ̂1, σ̂2, . . . , σ̂m}, if li = lj, then
∣∣∣Âi

∣∣∣ =
∣∣∣Âj

∣∣∣ and
pi,[t] = pj,[t].

Theorem 3.2. The schedule σ̂ = {σ̂1, σ̂2, . . . , σ̂m} is optimal for Pm||
∑

j sj.

Proof: Let Ji,[k] be the kth job in the sequence σ̂i on machine i. Let pi,[k] and ai,[k] be
the processing time and starting time of job Ji,[k], respectively. Interchange Ji,[u] and Jj,[v].
If pi,[u] = pj,[v], the total stretch is not changed. Therefore, we assume that pi,[u] ̸= pj,[v].

(a)
∣∣∣Âi

∣∣∣ =
∣∣∣Âj

∣∣∣ (b)
∣∣∣Âi

∣∣∣ =
∣∣∣Âj

∣∣∣ + 1

Figure 3. Job sequences σ̂i and σ̂j

ICIC EXPRESS LETTERS, VOL.11, NO.4, 2017 897

We claim that the total stretch cannot be decreased by this interchange for the cases
u = v and u ̸= v.

Case 1 (u = v) Let i < j. Then pi,[u] < pj,[v] and ai,[u] ≤ aj,[v]. By interchanging Ji,[u]

with Jj,[v], the change of the total stretch is calculated as below:

∆s =
(
∆si,[u] + ∆sj,[v]

)
+

 |Ai|∑
t=u+1

∆si,[t] +

|Aj |∑
t=v+1

∆sj,[t]


=

(
ai,[u] − aj,[v]

) (
− 1

pi,[u]

+
1

pj,[v]

)
+

(
pi,[u] − pj,[v]

) −
|Ai|∑

t=u+1

1

pi,[t]

+

|Aj |∑
t=v+1

1

pj,[t]


Since −

|Ai|∑
t=u+1

1
pi,[t]

+
|Aj |∑

t=v+1

1
pj,[t]

≤ −
|Ai|∑

t=u+1

1
pi,[t]

+
|Aj |∑

t=v+1

1
pj,[t]

≤ 0 and − 1
pi,[u]

+ 1
pj,[v]

< 0,

∆s ≥ 0.
Case 2 (u ̸= v) Without loss of generality, u > v. Then pi,[u] > pj,[v] and ai,[u] ≥ aj,[v].

It is evident that u = v + 1, since if u − v ≥ 2, two sequences obtained by interchanging
Ji,[u] and Jj,[v] would not be SPT. Then, by interchanging Ji,[u] with Jj,[v], the change of
the total stretch is calculated as below:

∆s =
(
∆si,[u] + ∆sj,[v]

)
+

 |Ai|∑
t=u+1

∆si,[t] +

|Aj |∑
t=v+1

∆sj,[t]


=

(
ai,[u] − aj,[v]

) (
− 1

pi,[u]

+
1

pj,[v]

)
+

(
pi,[u] − pj,[v]

) −
|Ai|∑

t=u+1

1

pi,[t]

+

|Aj |∑
t=v+1

1

pj,[t]


If i < j, −

|Ai|∑
t=u+1

1

pi,[t]

+

|Aj |∑
t=v+1

1

pj,[t]

≥ −
|Ai|∑

t=u+1

1

pi,[t]

+

|Ai|∑
t=v+1

1

pj,[t]

≥ 0.

If i > j, −
|Ai|∑

t=u+1

1

pi,[t]

+

|Aj |∑
t=v+1

1

pj,[t]

≥ −
|Aj |∑

t=u+1

1

pi,[t]

+

|Aj |∑
t=v+1

1

pj,[t]

≥ 0.

Therefore, ∆s ≥ 0. This completes the proof. �

Algorithm SPT-LS for parallel machines
Step 1. Construct a list of jobs by the SPT-rule.
Step 2. (List scheduling) Assign jobs to the least loaded machine according to a list of

jobs, where jobs are arranged by the specific criteria in the list (ties are broken arbitrarily).

Numerical Example. Consider three parallel identical machines with ten jobs. The
processing times of jobs are provided in Table 1.

Table 1. Three machines with ten jobs

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

pj 5 4 5 1 2 2 6 10 2 7

First, construct a list of jobs according to SPT-rule such as

List = {J4, J5, J6, J9, J2, J1, J3, J7, J10, J8}.

Second, make an assignment by the list scheduling.
Then, an optimal schedule is shown in the Gantt chart in Figure 4.

898 J. R. LEE AND S.-H. YOON

Figure 4. Optimal schedule

4. Conclusion. We consider scheduling problems in a single machine and parallel ma-
chines, in which the objective is to minimize the total stretch. The objective is a special
case of the total weighted completion times, which is known to be NP-hard. We provide
some dominant properties and propose a polynomial time algorithm for the problems.
The problem complexity of general parallel machine problems with release dates would
be studied for future research.

REFERENCES

[1] H. C. Hwang, S. Y. Chang and K. Lee, Parallel machine scheduling under a grade of service provision,
Computers & Operations Research, vol.31, pp.2055-2061, 2004.

[2] C. A. Glass and H. Kellerer, Parallel machine scheduling with job assignment restrictions, Naval
Research Logistics, vol.54, pp.250-257, 2007.

[3] Y. Azar, J. Naor and R. Rom, The competitiveness of on-line assignments, Journal of Algorithms,
vol.18, no.2, pp.221-237, 1995.

[4] A. Legrand, A. Su and F. Vivien, Minimizing the stretch when scheduling flows of divisible requests,
Journal of Scheduling, vol.11, pp.381-404, 2008.

[5] S. Muthukrishnan, R. Rajaraman, A. Shaheen and J. Gehrke, Online scheduling to minimize average
stretch, SIAM Journal on Computing, vol.34, no.2, pp.433-452, 2005.

[6] J. Xu and R. Nagi, Identical parallel machine scheduling to minimise makespan and total weighted
completion time: A column generation approach, International Journal of Production Research,
vol.51, nos.23-24, pp.7091-7104, 2013.

[7] Q. Zhang, W. Wu and M. Li, Minimizing the total weighted completion time of fully parallel jobs
with integer parallel units, Theoretical Computer Science, vol.57, pp.34-40, 2013.

[8] M. Pinedo, Scheduling: Theory, Algorithms and Systems, 4th Edition, Prentice-Hall, Englewood
Cliffs, NJ, 2012.

