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Abstract. This paper focuses on the problem of position tracking control of induction
motors (IMs) with parameter uncertainties in electric vehicle drive systems. An adaptive
neural networks output-feedback control method is proposed to deal with this problem.
Neural networks are utilized to approximate the nonlinearities and adaptive backstpping
technique is used to construct controllers. By first-order filters, the dynamic surface
solves the trouble of “explosion of complexity” problem of classical backstpping. The
algorithm in this paper ensures that all the closed-loop signals are bounded. Finally, the
simulation results illustrate the effectiveness of the proposed control algorithm.
Keywords: Induction motors, Output-feedback, Neural networks, Backstepping

1. Introduction. Induction motors (IMs) have been increasingly applied in electric ve-
hicles because of their simple and robust construction, low cost, and high reliability.
However, the control of IMs is complex due to highly nonlinear, multivariable dynamic
model. Hence, many control techniques have been developed to control IMs, such as
sliding mode control [1], backstepping control [2] and other control methods [3]. Back-
stepping is considered to be a powerful tool for design of controllers for nonlinear systems.
However, the problem of “certain functions must be linear” and “explosion of complexity”
limit the scope of the classical backstepping’s application. In another research front line,
adaptive NNs control approaches give a system methodology of solving the first problem
lying in the adaptive backstepping method in which NNs are utilized to approximate the
uncertain nonlinear functions [4]. However, the proposed NNs controllers combining the
backstepping technology have not taken account of the case of nonlinear systems with
unknown states. To cope with this, the NNs based output-feedback was applied in induc-
tion motors [5,6] to estimate some unknown state variables which cannot be measured
directly. However, the “explosion of complexity” problem for the adaptive backstepping
cannot be solved by the above approximation-based adaptive output-feedback control.

In order to solve the above problems, an output-feedback and adaptive neural networks
(NNs) based dynamic surface control method is proposed for induction motors in electric
vehicle drive systems. The dynamic surface control (DSC) technique is proposed to deal
with “explosion of complexity” problem inherent in conventional backstepping design, in
which differentiations are replaced by low-pass filters and virtual control of each step is
composed using filtered signal. Moreover, the output-feedback is utilized to estimate the
angle speed. In addition, the NNs are exploited to approximate the unknown nonlinear
functions. The proposed NNs control scheme not only guarantees the boundedness of all
of the signals in the closed-loop system, but also reduces the number of adaptive param-
eters which alleviates the computational burden. Finally, simulation results illustrate the
effectiveness of the proposed approach.
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The rest of the paper is organized as follows. Section 2 describes the mathematical
model of the position drive system for induction motors. The adaptive neural networks
output-feedback controllers are designed in Sections 3 and 4. Section 5 presents simulation
studies. Finally, Section 6 draws some conclusions.

2. Mathematical Model of Induction Motors Drive Systems. The dynamic model
of IMs with iron losses based on the d-q axis is displayed as follows:

dΘ

dt
= ωr,

dωr

dt
=
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ψdiqm − TL

J

diqm

dt
=
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The dynamic model of IMs with iron losses has been simplified in [7] as follows:

ẋ1 = x2, ẋ2 =
1

J
a1x3x5 −

TL

J
, ẋ3 = b1x4 − b2x3 + b3

x3x6

x5

+ x2x6

ẋ4 = c1uqs − c2x4 + x2x7 + c3
x3x7

x5

+ c4x3, ẋ5 = d1x5 + d2x6

ẋ6 = ē1x7 + ē2cx5 − ē3x6 + ē4
x2

3

x5

+ x2x3

ẋ7 = g1uds − g2x7 + g3
x3x4

x5

+ x2x4 − g4x5 + g5x6. (1)

3. The NNs Output-Feedback State Observer Design. In this section, since the
state variables are not available, a state observer should be introduced to approximate
the states. Therefore, rewrite Equation (1) as follows:

Ẋ = AX +
4∑

i=2

Ei

(
fi

(
X̂
)

+ △fi

)
+Diuqs

y = CTX (2)

where △fi=fi(X)−fi

(
X̂
)
, X̂=[x̂1, x̂2, x̂3, x̂4] are the estimates of X; A=


0 1 0 0
0 0 1 0
0 0 0 b1
0 0 0 0

,

Ei = [0, . . . , 1, . . . , 0], CT = [1, 0, 0, 0], Di = [0, 0, 0, c1]
T .

By the approximation property of radial basis function (RBF) neural networks in [4],

we can get f̂i

(
X̂
)

= φ̂T
i Pi

(
X̂
)

where φ̂i (i = 1, 2, 3, 4) are the estimation of the unknown

optimal parameter vector φi which are defined as

φi = arg min
φ̂i∈Ωi

[
sup
X̂∈Ui

∣∣∣f̂i

(
X̂|φ̂i

)
− fi

(
X̂
)∣∣∣]
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where Ωi, Ui are compact regions for φ̂i, X̂, respectively. Also the neural networks
minimum approximation error δi is defined by

δi = fi

(
X̂
)
− f̂i

(
X̂|φi

)
where δi satisfies |δi| < εi, with εi > 0 . Rewrite (2) as

Ẋ = A0X +
4∑

i=2

Ei

(
fi

(
X̂
)

+ △fi

)
+Diu+Ky

y = CTX (3)

where K = [k1, k2, k3, k4]
T and A0 = A−KCT . The vector K that will be chosen should

ensure A0 is Hurwitz matrix. Then, if given a QT = Q > 0, there exists a positive definite
matrix P T = P > 0 which satisfies

AT
0 P + PA0 = −Q.

Applying the RBF NNs, state observer can be design as

˙̂
X = A0X̂ +

4∑
i=2

Eif̂i

(
X̂|φ̂i

)
+Diu+Ky

ŷ = CT X̂. (4)

Define the observer errors e = X − X̂, and we can obtain the following equations with
(3)(4)

ė = A0e+
4∑

i=2

Ei

[
φ̃T

i Si

(
X̂
)

+ δi + △fi

]
with φ̃i = φi − φ̂i. Choose V0 = eTPe, and then

V̇0 = ėTPe+ eTP ė = −eTQe+ 2eTP
4∑

i=2

Ei

[
φ̃T

i Si

(
X̂
)

+ δi + △fi

]
.

By Young’s inequality, we have

2eTP
4∑

i=2

Ei

[
φ̃T

i Si

(
X̂
)

+ δi

]
≤ 6eT e+ ||P ||2

4∑
i=2

Ei

(
φ̃T

i φ̃i + ε2
i

)
2eTP

4∑
i=2

Ei△fi ≤

(
3 + ||P ||2

4∑
i=2

h2
i

)
eT e. (5)

Substituting (5) into (4), we can get

V̇0 ≤ −

(
λmin(Q) − 9 − ||P ||2

4∑
i=2

h2
i

)
eT e+ ||P ||2

4∑
i=2

Ei

[
φ̃T

i φ̃i + ε2
i

]
.

4. Adaptive NNs Dynamic Surface Controllers Design. At each step, a virtual
control function αi (i = 1, 2, 3, 4, 5) is constructed by using an appropriate Lyapunov
function. Finally, the real control laws uqs and uds are constructed to control the system.
The tracking error variables are designed as follows:

z1 = x1 − x1d, z2 = x̂2 − α1d, z3 = x̂3 − α2d, z4 = x̂4 − α3d

z5 = x5 − x5d, z6 = x6 − α4d, z7 = x7 − α5d.

Step 1: Consider the following Lyapunov function as V1 = V0 + 1
2
z2
1 , and then

V̇1 = V̇0 + z1ż1 = V̇0 + z1(x̂2 − ẋ1d + e2).
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Construct the virtual control α1 as α1 = −λ1z1 + ẋ1d. Let α1 pass a first-order filter
based on DSC techniques, and then we can get h1α̇1d + α1d = α1, α1d(0) = α1(0). From
the above we can get

V̇1 = V̇0 + z1(z2 + (α1d − α1) + α1 + e2 − ẋ1d). (6)

By using Young’s inequality z1e2 ≤ 1
2
z2
1 + 1

2
∥e∥2, then (6) can be rewritten as

V̇1 ≤ V̇0 +
1

2
∥e∥2 + z1 (α1d − α1) − λ1z

2
1 + z1z2. (7)

Step 2: The second Lyapunov function may be chosen as V2 = V1 + 1
2
z2
2 + 1

2r2
φ̃T

2 φ̃2,
and the derivative of V2 is calculated as follows

V̇2 ≤ V̇0 +
1

2
∥e∥2 + z1 (α1d − α1) − λ1z

2
1 + z1z2 +

φ̃T
2

r2

(
r2z2P2

(
X̂
)
−

.

φ̂2

)
+z2

(
z3 + (α2d − α2) + α2 + φ̂T

2 P2

(
X̂
)

+ k2e1 −α̇1d − φ̃T
2 P2

(
X̂
))

.

By means of Young’s inequality, we can obtain −z2φ̃
T
2 P2

(
X̂
)

≤ 1
2
z2
2 + 1

2
φ̃T

2 φ̃2. The

virtual controller and adaptive law are constructed as

α2 = −z1 −
1

2
z2 − φ̂T

2 P2

(
X̂
)
− k2e1 + α̇1d − λ2z2,

.

φ̂2 = r2z2P2

(
X̂
)
− σ2φ̂2. (8)

Then, the derivative of V2 can be simplified as

V̇2 ≤ V̇0 +
1

2
φ̃T
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1

2
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2
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+z2 (α2d − α2) + z2z3.

Step 3: The third Lyapunov function is considered as V3 = V2 + 1
2
z2
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2r3
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.
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We can get −z3φ̃
T
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(
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)
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2
z2
3 + 1
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3 φ̃3, by means of Young’s inequality. The virtual

controller and adaptive law are constructed as
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1
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(
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1
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)
− k3e1 + α̇2d − λ3z3
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.

φ̂3 = r3z3P3

(
X̂
)
− σ3φ̂3. (9)

Then V̇3 can be rewritten as

V̇3 ≤ V̇2 − z2z3 +
1

2
φ̃T

3 φ̃3 +
σ3

r3
φ̃T

3 φ̂3 − λ3z
2
3 + b1z3 (α2d − α2) + b1z3z4. (10)

Step 4: Similarly, the fourth Lyapunov function is considered as V4 = V3 + 1
2
z2
4 +

1
2r4
φ̃T

4 φ̃4, and the time derivative of V4 is given as

V̇4 = V̇3 + z4ż4 −
1

r4
φ̃T

4

.

φ̂4 ≤ V̇3 − b1z3z4 + b1z3z4 + z4

(
c1uqs + φ̂T

4 P 4

(
X̂
)

+k4e1 − α̇3d − φ̃T
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(
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+
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(
r4z4P4

(
X̂
)
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.
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)
.

By Young’s inequality, −z4φ̃
T
4 P4

(
X̂
)
≤ 1

2
z2
4 + 1

2
φ̃T

4 φ̃4. Construct the real controller

uqs =
1

c1

(
−b1z3 − λ4z4 − φ̂T

4 P4

(
X̂
)
− k4e1 + α̇3d

)
,

.

φ̂4 = r3z3P4

(
X̂
)
− σ4φ̂4.
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Then V̇4 can be rewritten as

V̇4 ≤ V̇3 − b1z3z4 +
1

2
φ̃T

4 φ̃4 +
σ4

r4
φ̃T

4 φ̂4 − λ4z
2
4 . (11)

Step 5: Similarly, V5 = V4 + 1
2
z2
5 , and then the time derivative of V5 is given as

V̇5 = V̇4 + z5ż5 = V̇4 + z5 (d1x5 + d2x6 − ẋ5d) . (12)

Construct the virtual controller as

α4 =
1

d2

(−d1x5 + ẋ5d − λ5z5) .

Then (12) can be rewritten as

V̇5 ≤ V̇4 − λ5z
2
5 + d2z5 (α4d − α4) + d2z5z6 (13)

Step 6: The Lyapunov function is chosen as V6 = V5 + 1
2
z2
6 , and V6 is given as

V̇6 ≤ V̇5 − d2z5z6 + d2z5z6 +

(
z6ē1x7 + ē2x5 − ē3x6 + ē4

(x̂3 + e3)
2

x5

+ (x̂2 + e2) (x̂+ e3)

)
.

Using Young’s inequality,

2ē4x̂3e3

x5

≤ ē24x̂
2
3

x2
5

+ ||e||2, x̂3e2 ≤
1

2
x̂2

3 +
1

2
||e||2, x̂2e3 ≤

1

2
x̂2

2 +
1

2
||e||2, e2e3 ≤ ||e||2.

Thus, V̇6 can be simplified as V̇6 ≤ V̇5 − d2z5z6 + z6 (ē1x7+f6), where

f6 = d2z5 + ē2x5 − ē3x6 +
ē4x̂

2
3

x5

+
ē4x̂

2
3

x52

+ x̂2x̂3 +
1

2
x̂2

3 +
1

2
x̂2

2 − α̇4d +

(
3 +

ē4

x5

)
||e||2.

There exsit RBF NNs ϕT
6 P6(Z6) such that f6 = ϕT

6 P6(Z6) + δ6(Z6), where δ6(Z6) is the
approximation error satisfying |δ6| ≤ ε6. Consequently, we can show the inequality

z6f6 ≤
1

2l26
z2
6 ||ϕ6||2P T

6 P6 +
1

2
l26 +

1

2
z2
6 +

1

2
ε2
6.

Then the virtual control α5 is constructed as

α5 =
1

ē1

(
−λ6z6 −

1

2
z6 −

1

2l26
z6η̂P

T
6 P6

)
.

Then V̇6 can be rewritten as

V̇6 ≤ V̇5 − d2z5z6 − λ6z
2
6 +

1

2
l26 +

1

2
ε2
6 + ē1z6z7

+
1

2l26
z2
6

(
||ϕ6||2−η̂

)
P T

6 P6 + ē1z6 (α5d − α5) . (14)

Step 7: Similarly, the Lyapunov function is considered as V7 = V6 + 1
2
z2
7 , and the time

derivative of V7 can be simplified as

V̇7 = V̇6 − ē1z6z7 + ē1z6z7 + z7

(
g1uds − g2x7 + g3

(x̂3 + e3)(x̂4 + e4)

x5

+(x̂2 + e2)(x̂4 + e4)−g4x5 + g5x6 − α̇5d

)
. (15)

According to Young’s inequality,

g3
x̂4e3
x5

≤ g2
3x̂

2
4

2x2
5

+
1

2
||e||2, g3

x̂3e4
x5

≤ g2
3x̂

2
4

2x2
5

+
1

2
||e||2

e3e4 ≤ ||e||2, e2e4 ≤ ||e||2, x̂he4 ≤
1

2
x̂2

h +
1

2
||e||2, h = 2, 4.
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Thus, (15) can be simplified as

V̇7 ≤ V̇6 − ē1z6z7 + z7 (g1uds+f7)

There exsit RBF NNs ϕT
7 P7(Z7) such that

f7 = e1z6 − g2x7 + g3
x̂3x̂4

x5

+
g2
2x̂

2
3

2x2
5

+
g2
3x̂

2
4

2x2
5

+ x̂2x̂4 +
1

2
x̂2

2 +
1

2
x̂2

4 − g4x5 + g5x6 − α̇5d+4||e||2.

There exsit RBF NNs ϕT
7 P7(Z7) such that f7 = ϕT

7 P7(Z7) + δ7(Z7), where δ7(Z7) is the
approximation error satisfying |δ7| ≤ ε7, for given ε7 > 0. Consequently, we can show the
following inequality:

z7f7 ≤
1

2l27
z2
7 ||ϕ7||2P T

7 P7 +
1

2
l27 +

1

2
z2
7 +

1

2
ε2
7.

Construct the virtual control as

uds =
1

g1

(
−λ7z7 −

1

2
z7 −

1

2l27
z7η̂P

T
7 P 7

)
.

Then (15) can be rewritten as

V̇7 ≤ V̇0 −
7∑

i=1

λiz
2
i + z1(α1d − α1) + z2(α2d − α2) + b1z3 (α3d − α3) + d2z5(α4d − α4)

+ē1z6(α5d − α5) +
4∑

i=2

(
1

2
φ̃T

i φ̃i +
σi

ri

φ̃T
i φ̂i

)
+

7∑
i=6

1

2l2i
z2

i

(
||ϕT

i ||2 − η̂
)
P T

i Pi

+
7∑

i=6

(
1

2
l2i +

1

2
ε2

i

)
+

1

2
||e||2.

Step 8: Define yi = αid − αi, i = 1, 2, . . . , 5. Then we have

ẏi = αid − αi = − αid − αi

hi

− α̇i = −yi

hi

+Bi,

where Bi = −α̇i. Finally, the Lyapunov function of whole system is chosen as V = V7 +∑5
i=1

1
2
y2

i + η̃2

2r8
, with r8 being positive constant. We obtain

V̇ ≤ V̇0 −
7∑

i=1

λiz
2
i + z1y1 + z2y2 + b1z3y3 + d2z5y4 + ē1z6y5 +

4∑
i=2

(
1

2
φ̃T

i φ̃i +
σi

ri

φ̃T
i φ̂i

)

+
7∑

i=6

(
1

2
l2i +

1

2
ε2

i

)
+

1

2
||e||2+ η̃

r8

(
·
η̂ − r8

2l26
z2
6P

T
6 P6 −

r8
2l27

z2
7P

T
7 P7

)
+

5∑
i=1

yiẏi. (16)

On the basis of (16), the adaptive law is constructed as

·
η̂ =

r8
2l26

z2
6P

T
6 P6 +

r8
2l27

z2
7P

T
7 P 7 − σ8η̂.

Then we can get

V̇ ≤ V̇0 −
7∑

i=1

λiz
2
i +

4∑
i=2

(
1

2
φ̃T

i φ̃i +
σi

ri

φ̃T
i φ̂i

)
+ z1y1 + z2y2 + b1z3y3

+d2z5y4 + ē1z6y5 +
7∑

i=6

(
1

2
l2i +

1

2
ε2

i

)
+

1

2
||e||2+

5∑
i=1

yiẏi −
η̃T η̂

r8
. (17)
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|Bi| has a maximum Bim on compact set |Ωi|, i = 1, 2, 3, 4, 5, |Bi| ≤ Bim. Therefore,
we can get

yiẏi ≤ −y
2
i

hi

+ |Bi||yi| ≤ −y
2
i

hi

+
1

2τ
B2

i y
2
i +

τ

2
, ziyi ≤

1

4
y2

i + z2
i , (18)

φ̃T
i φ̂i = φ̃T

i (φi−φ̃i) ≤
φT

i φi

2
− φ̃T

i φ̃i

2
, η̃T η̂ =η̃T (η − η̃) ≤ ηTη

2
− η̃T η̃

2
.

According to (17) and (18), we can obtain

V̇ ≤ −

(
λmin(Q) − 9 − ||P ||2

4∑
i=2

h2
i −

1

2

)
eT e−

5∑
i=1

(λi − 1) z2
i − λ7z

2
7 − λ6z

2
6

−
4∑

i=2

(
σi

2ri

− ||P ||2 − 1

2

)
φ̃T

i φ̃i −
5∑

i=1

(
y2

i

hi

−
(

1

4
+

1

2τ
B2

iM

))
y2

i −
1

2
η̃2 (19)

+
1

2
η2+

4∑
i=2

σiφ
T
i φi

2ri

+
7∑

i=6

(
1

2
l2i +

1

2
ε2

i

)
+ ||P ||2

(
ε∗22 + ε∗23 + ε∗24

)
≤ −aV + b.

where λmin(Q) − 9 − 1
2
− ||P ||2

∑n
i=1 h

2
i > 0 and σi

2ri
− ||P ||2 − 1

2
> 0

a = min

{
λmin(Q)−9−||P ||2

4∑
i=2

h2
i−

1
2

λmax(P )
, 2(λ1 − 1), 2(λ2 − 1), . . . , 2(λ5 − 1), 2λ6, 2λ7,

2r2

(
σ2

2r2
− ||P ||2 − 1

2

)
, . . . ,

σ4

2r4
− ||P ||2 − 1

2
, 2

(
y2

κ

hκ

−
(

1

4
+

1

2τ
B2

κM

))}

b = ||P ||2
(
ε∗22 + ε∗23 + ε∗23

)
+

4∑
i=2

σiφ
T
i φi

2ri

+
7∑

i=6

(
1

2
l2i +

1

2
ε2

i

)
+

1

2
η2 +

5

2
τ

where κ = 1, 2, 3, 4, 5. Furthermore, (19) implies that

Vn(t) ≤
(
Vn(t0) −

b

a

)
e−a(t−t0) +

b

a
Vn(t0) +

b

a
, ∀t > t0. (20)

The solution exists for t ∈ [0,∞), so we have

lim
t→∞

|z1| ≤
√

2b

a
. (21)

By choosing the suitable parameters, the tracking error z1 can converge to a small area
of the origin.

5. Simulation Results. In order to illustrate the effectiveness of the proposed method,
the simulation is run for the IMs with the parameters: J = 0.0586kgm2, B = 1.158 ∗
10−3N·m/(rad/s), Rs = 0.1Ω, Rr = 0.15Ω, Rfe = 30Ω, L1s = L1r = 0.1H, Lm = 0.068H,
np = 1. The simulation is carried out under the zero initial conditions. The RBF NNs are
chosen in the following way. The NNs ϕT

i Pi(Z) contain eleven nodes with centers spaced
evenly in the interval [−9, 9] and widths being equal to 2. The reference signals are taken
as x1d = 0.5 sin(t) + 0.3 sin(0.5t) and x5d = 1. The proposed adaptive NNs controllers are
used to control the induction motors. The control parameters are chosen as: λ1 = 30,
λ2 = 1, λ3 = 15, λ4 = 85, λ5 = 325, λ6 = 30, λ7 = 50, r8 = r4 = r3 = r2 = 0.05,
l6 = l7 = 0.25.

Figure 1 shows the tracking performance of Θ and x1d, and Figure 2 displays the
trajectories of ψd and x5d. Figure 1 and Figure 2 show that the given signals can be
tracked very well by the method proposed in this paper. Figures 3 and 4 show the curves
of uqs, uds. It can be seen that the controllers are bounded. According to the above
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simulation results, we can conclude that the proposed controllers can track the given
signals very well even under unknown states and uncertain parameters.

6. Conclusion. In this paper, adaptive neural networks output-feedback control algo-
rithm has been introduced with parametric uncertainty. Neural networks are applied to
approximate the unknown nonlinear functions and the output-feedback is designed to es-
timate the unmeasured states. Furthermore, the problem of explosion of complexity can
be avoided by employing the first-order filters. Simulation results testify its effectiveness
in the IMs drive systems.
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