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Abstract. This paper presents a fuzzy adaptive control method for a class of uncertain
chaotic economical system, capable of guaranteeing prescribed performance bounds. By
prescribed performance bounds we mean that tracking error should converge to a prede-
fined arbitrarily small set, with convergence rate no more than a prescribed value. The
main idea is to transform the original constrained system into an equivalent one via an
appropriately defined output error transformation. Furthermore, for updating the pa-
rameters of the fuzzy logic systems, a proportional-integral adaptation law is introduced.
Finally, an illustrative example is given to demonstrate the effectiveness of the proposed
results.
Keywords: Chaotic economical system, Prescribed performance control, Fuzzy adap-
tive control

1. Introduction. In the last decades researchers from almost all fields of natural sci-
ences have studied phenomena that involved nonlinear systems exhibiting chaotic behav-
ior. This is due to the fact that nonlinear systems demonstrate rich dynamics and have
sensitivity on initial conditions. In the 1980s, economist Stutzer revealed the chaotic phe-
nomena in economic system for the first time [1], which aroused the human’s reflection on
the traditional economics theory and after that the issue on nonlinear economics, chaotic
economics has become a hot topic [2-4]. The modern research has shown that economic
system can exhibit not only stable, unstable and periodic behavior but also chaotic phe-
nomenon. In fact, financial crisis is just a chaotic phenomenon of the economic system
[5]. Moreover, economists have noticed the fact that uncertainties in the economic de-
velopment, such as the impact of non-economic factors, the sudden change of economy
in frequency are increasing [6]. Financial risks come from uncertainties, and therefore it
has an important theoretical and practical significance by introducing uncertainties into
economic system [7]. Taking into consideration the chaotic behaviors and uncertainties in
the economic system, it is essential to investigate the chaos control strategies for economic
and financial systems in order to solve financial crisis and the related problems. The aim
of chaos control is to suppress or eliminate the chaotic behavior of the nonlinear system.

On the other hand, one of the most important issues associated with the adaptive
control of nonlinear systems is tracking error performances. However, no systematic pro-
cedure exists to accurately compute the required upper bounds of tracking errors. The
problem is relaxed for feedback linearizable systems in [8,9]. Performance issues on tran-
sient behavior (i.e., overshoot, undershoot convergence rate) are hard to be established
analytically, even if the nonlinearities are completely known. In [10], L2 norm of the
tracking error which is derived to be a function of initial estimation errors and design pa-
rameters is studied. Contributions in guaranteeing prescribed transient and steady state
output error bounds can be found in [11-15]. In [11,12], the tracking error can converge to
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a neighborhood of prescribed radius λ > 0, while, in [13], funnel control is established in
the light of which the achieved transient behavior is governed by a dynamic gain involving
the required transient response characteristics. In [14], robust adaptive control schemes
for SISO strict feedback nonlinear systems, capable of guaranteeing prescribed perfor-
mance bounds are considered. In [15], a universal prescribed performance controller is
obtained for cascade systems involving dynamic uncertainty, unknown nonlinearities and
exogenous disturbances. The synchronization for two different fractional-order chaotic
systems, capable of guaranteeing synchronization error with prescribed performance, is
investigated in [16]. To ensure desired transient and steady-state behaviours of the track-
ing error under actuator faults, the dynamic effect caused by the actuator failures on the
error dynamics of a transformed model is analysed in [17].

To the best of our knowledge, there are few studies dealing with the prescribed per-
formance control problem for economic system. Inspired by the work in [14-17], we in-
vestigate the tracking control with guaranteed prescribed performance for uncertain eco-
nomic system. The unknown nonlinear functions are approximated by fuzzy logic systems.
Compared with the related work, there are two main contributions that are worth to be
emphasized. (1) Compared with the existing results, the system we considered consists of
not only external disturbances but also unknown model uncertainty. (2) An adaptation
PI law based on e-modification is proposed to update the fuzzy parameters.

This paper is organized as follows. Problem formulation and preliminaries are given in
Section 2, and description of the fuzzy logic system is given in Sections 3. Adaptive fuzzy
control design with prescribed performance is proposed in Section 4. Section 5 provides
a simulation example to illustrate the effectiveness of our results. Finally, Section 6 gives
some concluding remarks.

2. Problem Formulation and Preliminaries. Consider the following uncertain non-
linear economical system:

ẋ1 = x3 + (x2 − a)x1 + ∆f1(x1, x2, x3, t) + d1(t) + u1(t)

ẋ2 = 1 − bx2 − x2
1 + ∆f2(x1, x2, x3, t) + d2(t) + u2(t)

ẋ3 = −x1 − cx3 + ∆f3(x1, x2, x3, t) + d3(t) + u3(t)

(1)

where the three state variables x1, x2, x3 stand for the interest rate, the investment
demand, and the price index, respectively. Constant a is the saving amount, constant b
is the cost per investment, and constant c is the elasticity of demand of the commercial
markets. ∆fi(x1, x2, x3, t), i = 1, 2, 3 and di(t), i = 1, 2, 3 represent unknown model
uncertainty and external disturbances of the system, respectively, and ui(t), i = 1, 2, 3 is
the control input. Denote

x = [x1, x2, x3]
T

f(x) =
[
x3 + (x2 − a)x1, 1 − bx2 − x2

1,−x1 − cx3

]T

d(t) = [d1(t), d2(t), d3(t)]
T

∆f(x, t) = [∆f1(x1, x2, x3, t),∆f2(x1, x2, x3, t),∆f3(x1, x2, x3, t)]
T

u(t) = [u1(t), u2(t), u3(t)]
T

Then, (1) can be rewritten as

ẋ = f(x) + ∆f(x, t) + u(t) + d(t) (2)

The objective of this paper is to construct an adaptive fuzzy controller such that:
P1. The system state x tracks the reference signal xd ∈ Rn and all the signals in the

closed-loop system remain bounded.
P2. Achieve prescribed transient and steady state behavioral bounds on the tracking

error ei(t) = xi(t) − xdi(t), i = 1, 2, · · · , n.
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To meet the objective, we make the following assumption.

Assumption 2.1. The desired trajectory xd(t) is a known bounded function of time, with
bounded derivatives.

3. Description of the Fuzzy Logic System. The fuzzy logic system that employs
singleton fuzzification, sum-product inference and center-of-sets defuzzification is modeled
by

α(x) =

∑N
j=1 θj

∏n
i=1 µF j

i
(xi)∑N

j=1

[∏n
i=1 µF j

i
(xi)

] (3)

where α(x) is the output of the fuzzy system, x is the input vector, µF j
i
(xi) is xi’s member-

ship of the jth rule and θj is the centroid of the jth consequent set. (3) can be rewritten
as following equation:

α(x) = θTψ(x) (4)

with θ = [θ1, · · · , θN ]T , ψ(x) = [p1(x), p2(x), · · · , pN(x)]T , and the fuzzy basis function
can be written as

pj(x) =

∏n
i=1 µF j

i
(xi)∑N

j=1

[∏n
i=1 µF j

i
(xi)

]
Suppose there are N rules of the fuzzy system used to approximate the unknown function
α(x):
Rule i: if x1 is F i

1 and · · · and xn is F i
n then α(x) is Bi, i = 1, 2, · · · , N .

4. Adaptive Fuzzy Control Design with Prescribed Performance. P2 is intro-
duced in the analysis with the help of the performance function which translates the
prescribed performance characteristics into tracking error constraints.

Definition 4.1. A smooth function y : R+ → R+ − {0} is called a performance function
if y(t) is decreasing and limt→∞ y(t) = y∞ > 0.

Hence, we can guarantee P2 by satisfying:

−y(t) ≤ e(t) ≤ y(t) (5)

for all t ≥ 0 and y(t) is a performance function associated with the tracking error e(t).
The constant y∞ represents the maximum allowable size of the tracking error e(t) at the
steady state, and the decreasing rate of the performance function y(t) represents a lower
bound on the required speed of convergence of e(t). The aforementioned statements are
shown in Figure 1.

Figure 1. Tracking error prescribed performance
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4.1. Error transformation. In order to meet the control objective, we introduce an
error transformation which can transform the original nonlinear system, in the sense of
(5), into an equivalent unconstrained system. Let us define:

ei(t) = yi(t)si(zi), i = 1, 2, · · · , n (6)

where ei(t) are performance functions, and zi are the transformed errors. si(·) are smooth,
strictly increasing and thus invertible functions and satisfy:

−1 ≤ si(zi) ≤ 1,

lim
zi→−∞

si(zi) = −1 (7)

lim
zi→+∞

si(zi) = 1

For example, a candidate function could be si(zi) = tanh(zi). If zi remain bounded, we
can obtain −1 < si(zi) < 1; furthermore we have −y(t) < e(t) < y(t). Owing to the
properties of si(zi) and y(t) ≥ y∞ > 0, we have the inverse transformation:

zi = s−1
i

(
ei(t)

yi(t)

)
, i = 1, 2, · · · , n (8)

are well defined. Then if we can keep zi(t) bounded, we can guarantee (5). Differentiating
(8) with respect to time gives:

żi =
∂s−1

i

∂
(

ei(t)
yi(t)

) 1

yi(t)

[
fi(x) + ∆fi(x, t) + di(t) + ui − ẋdi −

ei(t)ẏi(t)

yi(t)

]
(9)

Define

ri =
∂s−1

i

∂
(

ei(t)
yi(t)

) 1

yi(t)
> 0, vi = −ẋdi −

ei(t)ẏi(t)

yi(t)

Then (9) can be rewritten as

żi = ri

[
fi(x) + ∆fi(x, t) + di(t) + ui + vi

]
, i = 1, 2, · · · , n (10)

Let z = [z1, · · · , zn]T , v = [v1, · · · , vn]T , Γ = diag[r1, · · · , rn], γ(x) = f(x)+∆f(x, t)+d(t).
Then (10) can be written into the following compact form:

ż = Γ
[
γ(x) + u+ v

]
(11)

4.2. Adaptive fuzzy control design. Since the nonlinear function γ(x) is unknown,
we employ fuzzy systems to approximate γi(x). Then, the nonlinear function γi(x) can
be approximated, by the fuzzy logic systems (4) as

γ̂i = θT
i ψ(x), i = 1, 2, · · · , n (12)

Let us define the ideal parameters of θi as:

θ∗i = arg min
θi

[sup |γi(x) − γ̂i(x)|] (13)

Define the parameter estimation errors and the fuzzy approximation errors as follows:

θ̃i = θi − θ∗i (14)

εi(x) = γi(x) − γ̂i (x, θ
∗
i ) (15)

with γ̂i (x, θ
∗
i ) = θ∗iψ(x). As in [14], we can assume that the fuzzy approximation error is

bounded for all x, i.e., |εi(x)| < ε̄i, ε̄i is unknown constant. Let ε = [ε1(x), · · · , εn(x)]T ,

ε̄ = [ε̄1, · · · , ε̄n]T . Then we can get |ε(x)| ≤ ε̄. From above analysis, we have

γ̂(x, θ) − γ(x) = γ̂(x, θ) − γ̂(x, θ∗) + γ̂(x, θ∗) − γ(x) = θ̃Tψ(x) − ε(x) (16)
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where γ̂(x, θ) = [γ̂1(x, θ1), · · · , γ̂n(x, θn)]T . Then the controller can be constructed as

u = −θTψ(x) − v −Kz + ur (17)

with

uri = −sign(zi)ri ˆ̄εi, i = 1, 2, · · · , n (18)

where K = diag[k1, · · · , kn] with ki > 0, i = 1, 2, · · · , n are free positive constants of the
design. ˆ̄εi are desgin parameters which will be defined later.

Multiplying sT to (11) and using (16)-(18) we obtain

zT ż = −
n∑

i=1

rikiz
2
i −

n∑
i=1

riziθ̃
T
i ψ(x) +

n∑
i=1

riziεi(x) −
n∑

i=1

ziuri (19)

In order to meet the control objective, ˆ̄εi and the fuzzy parameters θi are updated by

θi =

∫ t

0

[−σiγ0i|zi|θi + γ0iziψ(x)] dτ − γ1iδi (20)

with δi = σi|si|θi − siψ(x), and γ0i, γ1i, σi > 0 are design constants.

Remark 4.1. In (20), the term −σiγ0i|zi|θi keeps all the parameter bounded, and δi makes
the fuzzy parameters a fast convergence.

Now we are ready to give the following results.

Theorem 4.1. Consider the system (2) on the assumption that the desired trajectory
xd(t) is a known bounded function of time, with bounded derivatives. Then the proposed
controller defined by (17) with the adaption law (20) guarantees the following properties:
(a) all signals in the closed-loop system are bounded; (b) the prescribed performance of
the closed-loop system is achieved.

Proof: Let us consider the following Lyapunov function candidate

V =
1

2
zT z +

1

2

n∑
i=1

ri

γ0i

(
θ̃i + γ1iδi

)T (
θ̃i + γ1iδi

)
(21)

The time derivative of V is given by

V̇ = zT ż +
n∑

i=1

ri

γ0i

(
θ̃i + γ1iδi

)T (
˙̃θi + γ1iδ̇i

)
= V̇1 + V̇2 (22)

From (19) and (20), we have

V̇1 = zT ż ≤ −
n∑

i=1

rikiz
2
i −

n∑
i=1

riziθ̃
T
i ψ(x) +

n∑
i=1

ri|zi|ε̄i −
n∑

i=1

ziuri (23)

Note that −2θ̃T
i θi ≤ −

∑n
i=1 ∥θ̃i∥2 +

∑n
i=1 ∥θ∗i ∥2. Then we have

V̇ ≤ −
n∑

i=1

rikiz
2
i +

n∑
i=1

|zi|riε̄i +
1

2

n∑
i=1

riσi|zi|∥θ∗i ∥2 −
n∑

i=1

|zi|ri ˆ̄εi (24)

If we choose ˆ̄εi ≥ ε̄i + 0.5σi∥θ∗i ∥2, it yields

V̇ ≤ −
n∑

i=1

rikiz
2
i (25)

Then V is always negative, which implies that zi and θ̃i+γ1i ∈ L∞. Since zi keep bounded,
we have −y(t) < e(t) < y(t). This completes the proof.
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Remark 4.2. In order to avoid the algebraic loop problem in (20), the adaption law can
be rewritten as

θi =
1

1 + γ1iσi|zi|

(∫ t

0

[−σiγ0i|zi|θi + γ0iziψ(x)] dτ + γ1iziψ(x)

)
(26)

5. Simulation Results. In this section, an illustrative example is presented to illustrate
the effectiveness and applicability of the proposed adaptive fuzzy control approach and to
confirm the theoretical results. Consider the following fractional-order economic system
with model uncertainties and external disturbances [18].

ẋ = z + (y − 3)x+ ∆f1(x, y, z, t) + d1(t)

ẏ = 1 − 0.1y − x2 + ∆f2(x, y, z, t) + d2(t)

ż = −x− z + ∆f3(x, y, z, t) + d3(t)

(27)

In the simulation, the uncertainty term and external noise of the system are selected as
follows

∆f1(x, y, z, t) + d1(t) = 2 + sin(t)

∆f2(x, y, z, t) + d2(t) = 4 − cos(t)

∆f3(x, y, z, t) + d3(t) = 4 − 2 sin(t)z + 3 cos(t)

(28)

The desired trajectory is xd = [sin(t), sin(t), sin(t)]T . The initial values of the system are
selected as x = [−1, 1, 3]T . The transient and steady state error are prescribed through
the performance functions yi(t) = 2e−0.7t + 0.05, i = 1, 2, 3, and the transformation
functions are si = 2

π
arctan(zi). The design parameters are chosen as follows: γ0i = 500,

γ1i = 500, σi = 0.05, ki = 1, ˆ̄εi = 10, i = 1, 2, 3. The discontinuous function sign(zi(t)) has
been replaced by smooth function arctan(20zi(t)). The simulation results are shown in
Figure 2 and Figure 3. The simulation results show that output tracking with prescribed
performance is achieved.

Figure 2. The control inputs
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Figure 3. Tracking errors response

6. Conclusion. This paper proposes a robust adaptive fuzzy control method for uncer-
tain economical system with unknown disturbances, capable of guaranteeing a prescribed
performance. By using prescribed performance functions, we transform the system into
an equivalent one, and it is sufficient to guarantee ultimate boundedness property of the
transformed output error and a uniform boundedness of other signals in the closed-loop
system. Simulation results have shown the effectiveness of the proposed scheme. The
prescribed performance control of fractional-order economical system is our further inves-
tigation direction.
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