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Abstract. This paper compared the hedging ratio and its corresponding hedging effects
of OLS, ECM and GARCH models separately in six stages. We found that the applica-
bility of the three models is determined by their algorithm and assumptions. The OLS
model is the most suitable when the spot and futures prices change is relatively stable and
has a strong linear characteristic. When prices changed a lot but do not show clustering
characteristics, the ECM model behaves better. GARCH model is the best when ARCH
effect occurs. So there is no absolute most superior model throughout the whole hedg-
ing period. We should consider the different changing characteristics of basis and prices
when making hedging portfolios. Models are just some kinds of tools. We should select
tools dynamically, rather than relying on some dynamic tools.
Keywords: Hedging ratio, Hedging effects, OLS, ECM, GARCH

1. Introduction. The key issue of commodity futures hedging is the determination of
the optimal hedging ratio, that is to say, how many units of futures positions correspond
to 1 unit spot position. The early analysis of optimal hedging ratio for futures was based
on the Markowitz mean-variance framework and developed by Working [1], Johnson [2],
and Stein [3]. They considered hedging as making portfolios between spot market and
futures market. The existing research can be divided into two categories: the static
hedging model and the dynamic hedging model.

Most common static hedging methods use the slope of the spot-to-futures linear regres-
sion as the optimal hedging ratio. Those static models assume that the optimal hedging
ratio does not change with time. However, the constant hedging ratio cannot reflect
the time-varying characteristics of spot and futures prices. Ederington [4] calculated the
optimal hedging ratio by OLS method and proposed a way to measure the effectiveness
of hedging. Ghosh [5] and Sim and Zurbruegg [6] have shown that the error correction
model (ECM) is a good way to further characterize the responses of the spot and futures
prices to the error correction term in different systems. However, the ECM cannot handle
stationary time series data and also assumes that the hedging ratio does not change with
time.

Researches on dynamic hedging ratio were mainly based on the autoregressive condi-
tional heteroskedasticity (ARCH) model and the generalized autoregressive conditional
heteroscedasticity (GARCH) model [7], because the financial time series data always has
time-varying second moment. The ARCH and GARCH model are widely used to ob-
serve the impact of time-varying characteristics and the cointegration between spot and
futures prices on hedging ratio. There are also a lot of researches on the optimal hedging
ratio in china, such as Wang et al. [8], Peng and Ye [9], Shao [10]. In recent years, the
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static models, such as OLS, ECM or VAR develop slowly. Scholars preferred an accurate
description of the volatility characteristics of asset prices and time-varying of hedging
ratio. So a lot of dynamic hedging models that are based on GARCH were developed,
such as CCC-GARCH (1990), BGARCH (1993), MRS-GARCH (2004), DADCC-GARCH
(2011), Copula-ECM-GARCH (2011) and MRS-DCC-GARCH (2015). The principle of
all these models is the combinations of GARCH and various distribution functions to
describe the volatility characteristics of the residual series of the return on assets. The
purpose of doing so is to accurately depict the volatility of asset prices. However, in
practice, these models ignore an important issue, that is, the changing frequency of spot
prices and futures prices is inconsistent. Spot prices are more low-frequency data, and
futures prices are high-frequency data. Therefore, in practice, the accurate description of
prices fluctuations is meaningless. The pursuit on precise description of time-varying is
the same.

We can find that the static hedging method is mainly OLS and ECM models and the
dynamic methods are mainly GARCH and its extended model. In other words, OLS,
ECM and GARCH models are the most widely and the basic models used in hedging. It
can be also found that, the existing researches calculated the hedging ratio within a given
time frame, but ignored the impact of different stages of futures and spot prices on their
hedging effect, and the resulting changes of the basis. Because the psychological state of
investors is completely different when the prices rise, fall or stable, the different stages
of prices change have a great impact on hedging practices. This will directly affect the
hedging ratio and hedging effect.

Therefore, this paper will analyze and compare the hedging effects of three models in
three different prices stages and three different basis stages. Then, we will analyze the
applicability of the three models in different stages.

2. Introduction of Three Models.
(1) OLS
Ordinary least square method is the main method of traditional regression model which

was proposed by Witt et al. [11]:

∆St = α + h∆Ft + εt

h = Cov(∆St, ∆Ft)/V ar(∆Ft)
(1)

In Equation (1), ∆St and ∆Ft represent the spot and futures prices changes; α is the
intercept term of the regression function. h is the slope of the regression function, which
also means the hedging ratio (minimum variance hedge ratio). εt is the random error.
OLS model only depicts the static relationship between futures and spot prices, which
assumes that the changes in futures and spot prices are stable and residual items subject
to the white noise process.

(2) ECM
ECM takes account of the non-stationary, long-run equilibrium and short-run dynamic

relationships between futures and spot prices.

∆St = Cs + λsZt−1 +
l∑

i−1

αsi∆St−i +
l∑

i−1

βsi∆Ft−l + εst

∆Ft = Cf + λfZt−1 +
l∑

i−1

αfi∆St−1 +
l∑

i−1

βfi∆Ft−1 + εft (2)

∆St = α + h∆Ft +
m∑

i−1

Yi∆St−1 +
n∑

j−1

θj∆Ft−j + ωZt−1 + εt
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Here Zt−1 is error correction term and is a stationary linear combination of spot prices
and futures prices. At least one of λs or λf is no zero. The regression coefficient h of ∆Ft

is the hedging ratio to be estimated. ECM incorporates the cointegration relationship
of the futures and spot prices and the error correction term that includes the long-run
equilibrium mechanism and the short-term non-equilibrium. It can also describe the
short-term volatility of the variable.

(3) GARCH model
GARCH model can describe the volatility clustering, that is, the GARCH model can

be applied when the data series show ARCH effect. The variance equation of a normal
GARCH (p, q) model is:

σ2
t = α0 + α1ε

2
t−1 + · · · + αqε

2
t−q + γ1σ

2
t−1 + · · · + γpσ

2
t−p

εt = vt

√
σ2

t

(3)

Here p is the autoregressive order of σ2
t , q is the lag order of ε2

t , vt is a white noise,
and εt is disturbance term. We use the widely used GARCH (1, 1) model in this paper to
estimate hedging ratio. The variance equation is:

σ2
t = α0 + α1ε

2
t−1 + γ1σ

2
t−1 (4)

Here σ2
t > 0, α0 > 0, α1 > 0, γ1 > 0. This assumption also makes the GARCH model

ignore the residual asymmetric effects.

3. Data Selection and Statistical Description.
(1) Division of three stages
Copper is the most expensive transaction variety in Chinese futures market, and its

trading volume is relatively high, which made it a “benchmark” in the mind of professional
investors. Therefore, we choose copper as the research tool to compare the hedging
effect of OLS, ECM and GARCH models in Chinese futures market. Because the time
characteristic is often active in a few months before the delivery date of futures contracts,
we choose the futures contract of CU1606 and the data from November 2, 2015 to May
3, 2016 and the spot prices of the corresponding time span.

It can be seen from Figure 1 that during this period the futures and spot prices of
copper have three stages which are rising, stable and falling. The solid line represents
the spot price, and the dotted line indicates the futures prices. From the early November
2015 to the late November 2015 spot and futures prices were in the short-term continuous
decline, and from the end of November 2015 to mid-January 2016 spot and futures prices
were in the short-term relatively stable stage, and the rising stage was from mid-January
2016 to mid-March. So we set the data into three stages, which were decline stage from
November 2, 2015 to November 23, 2015, stable stage from November 24, 2015 to January
19, 2016 and rising stage from January 20, 2016 to March 17, 2016. In this paper we will
calculate the hedging ratio and the hedging effect of OLS, ECM and GARCH models
separately in each stage.

Figure 1. Spot and futures prices trend of copper
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Figure 2. Basis of copper

Table 1. Cointegration test results

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic −5.775665 0.0000

1% level −3.484198
Test critical values: 5% level −2.885051

10% level −2.579386

Changing of the basis has a direct impact on the hedging effect. Hedging is actually
a replacement of the basis risks with spot prices volatility risks. In theory, if the basis
has not changed from the beginning to the end of hedging, it is possible to achieve a
full hedging. So basis is a variable that should be closely watched in the course of a
transaction. There are three situations of basis which are negative, positive and zero. Its
changes can also be divided into three stages which are going weak, strong and stable.

Figure 2 shows that during this period the basis of copper has three stages of negative,
positive and zero. The positive stage was from November 2, 2015 to January 7, 2016.
The changing stage was from January 8, 2016 to February 3, 2016 and negative stage was
from February 4, 2016 to March 28, 2016. We will also calculate the hedging ratio and
the hedging effect of OLS, ECM and GARCH models separately in those stages.

(2) Cointegration between spot and futures prices
Firstly, we use ADF to do the unit root test of spot prices and futures prices of copper.

The results of ADF unit root test show that futures prices and basis are all nonstationary.
Then we use ADF to test the first-order difference of spot prices and futures prices and
found that they are all first order single integer sequence. So we need to use cointegration
test to check whether those sequence has a long-term equilibrium relationship, which can
avoid the pseudo-regression that is caused by the original nonstationary sequence. The
test results are shown in Table 1.

We can see from Table 1 that there are cointegration relationships between spot prices
and futures prices. It means a long-term equilibrium between spot and futures prices.

4. Comparison of Three Models.
(1) Hedging effect
Hedging effect refers to the percentage of variance reduction of rate of returns before

and after hedging. Assume that RH is the rate of return of a spot and futures portfolio.
We can get the following equation:

RH = RP − hRF (5)

In Equation (5), RF and RP are the earning rate of futures and spot in the portfolio,
and h means the hedging ratio. The variance of the portfolio returns is:

σ2(RH) = σ2(RP ) + h2 × σ2(RF ) − 2hCov(RP , RF ) (6)
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The first-order condition of Equation (6) is:

h = Cov(RP , RF )
/
σ2(RF ) (7)

Then we substitute Equation (7) into Equation (6) and get the variance of return under
risk minimization:

σ2
min(RH) = σ2(RP )

[
1 − ρ2(RP , RF )

]
(8)

In Equation (8), ρ(RP , RF ) means the correlation coefficient of rate of return between
spot and futures. Then we get the hedging effect:

He = 1 − σ2
min(RH)

/
σ2(RP ) = ρ2(RP , RF ) = hσ(RF )

/
σ(RP ) (9)

Now we can get the results in six stages in Table 2.

Table 2. Hedging effect of three models in six stages

Stages Models Hedging ratio Hedging effect

Rising stage of prices
OLS 0.763472 0.827095
ECM 0.781468 0.84659

GARCH 0.792673 0.858729

Stable stage of prices
OLS 0.802343 0.827784
ECM 0.803457 0.828933

GARCH 0.795146 0.820358

Decline stage of prices
OLS 1.066742 1.25468
ECM 1.094853 1.287744

GARCH 1.064667 1.25224

Negative stage of basis
OLS 0.49481 0.509167
ECM 0.45256 0.465691

GARCH 0.421624 0.433857

Changing stage of basis
OLS 0.132714 0.189451
ECM 0.219204 0.312916

GARCH 0.131158 0.18723

Positive stage of basis
OLS 0.569718 0.777743
ECM 1.058457 1.444939

GARCH 0.131247 0.17917

(2) Analysis of calculation results
We use these three models to calculate the optimal hedging ratio respectively, and put

the results in Table 2. There are barely noticeable differences among the optimal hedging
ratio that is calculated by three models during the period of price decline. During the
stable stage of the spot and futures prices, the optimal hedging ratio was significantly
lower than the decline stage. In the period of prices increase, the hedging ratio is lower
than the previous two stages. The optimal hedging ratio of three models differ greatly
when divided according to basis. When the expected value of the basis is greater than
zero, the hedging ratio of the ECM model is the highest, while the GARCH model is very
low. When the basis changed from positive to negative in a short term, the hedging ratios
are all relatively low and basically the same. When the expected value of the basis is less
than zero, the results of three models are basically the same and stable. It should be noted
that this time period is near the delivery date, and the basis converges from negative to
zero gradually. Whether it is long hedge or short hedge, the investor’s portfolio tends to
be stable.

The results show that the hedging effect of GARCH model is the best in the rising
stage of prices. It can be seen intuitively from Figure 1 that the futures and spot prices
show a clustering and autocorrelation characteristics. The hedging effect of ECM model
is the best in stable stage of prices. At this point there is a divergence between the futures
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and spot price and the basis changes have occurred. While the ECM takes account of the
cointegration relationship between the spot and futures prices through the introduction
of the error correction term in this case, the hedging effect of the ECM model is relatively
better than the others in the decline stage of prices. OLS model and ECM are better than
GARCH model in this stage. Because the spot and futures prices do not show obvious
volatility clustering characteristics, that is, there is no ARCH effect, the spot and futures
prices in this stage have an obvious linear relationship, which makes the hedging effect
calculated by static model better than the dynamic model here.

When the basis is negative, the hedging effect of OLS model is the best. The average
value of the basis in this stage can be deemed as fluctuation around 0 near the delivery
day. It can be considered that the spot and futures prices change is relatively stable and
has a strong linear characteristic here. So the OLS model is the most suitable at this time.
The hedging effect of ECM is the best in changing stage and positive stage of basis. The
spot and futures prices do not show clustering characteristics and ARCH effect, but they
changed a lot in these two stages. So the cointegration relationship needs to be considered
here and the ECM model behaves better in this case.

5. Conclusions. First, the empirical results show that the model with a high hedging
ratio also has a relatively good hedging effect, if this relationship is a coincidence when
only considering the minimum risk and if it is a reasonable relationship when the benefits
are considered together. All those are the follow-up study of this article.

Secondly, the results of this study show that different hedging models have different
hedging effects under different standards of classification when the other conditions are
the same. This is determined by the algorithm and assumptions of hedging model. For
example, the ECM model takes account of the equilibrium relationship between the spot
and futures prices, and can reflect the short-term imbalance characteristics. The GARCH
model is a dynamic model, which focuses on the clustering characteristics of data, while
the OLS model only takes account of the linear relationship between the spot and futures
prices. Essentially, the estimation algorithms of these three models are all based on the
least squares method. This determines the applicability of different models in different
stages. It also shows that investors should choose the hedging model dynamically ac-
cording to the changing stage of prices and their risk acceptance level, rather than just
selecting one dynamic model.

Finally, the good or bad hedging effect is only a relative concept. Although each
hedging model aims at finding the optimal hedging ratio, they all have shortcomings in
algorithm, so there is no absolute most superior model throughout the whole hedging
period. There are three problems to be solved in future. The first is to further analyze
the applicability of models in different volatility periods of asset prices from the algorithm
and assumptions aspects. The second is to design a low frequency time-varying features
hedging ratio model system. The third is to solve the mismatch problem of low frequency
spot prices fluctuations and high frequency futures prices fluctuations.
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