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Abstract. The identification of stars and satellites is one of the most important ap-
plications of space surveillance system. However, the features for target recognition are
difficult to extract for star maps because of the point target imaging property and the in-
fluence of the dark space background. As a result, the position information of the targets
becomes a key feature for target recognition. Gaussian surface fitting is one of the most
widely used centroid extraction techniques. By theoretical analysis and tests, this pa-
per shows that the traditional Gaussian surface fitting method has significant systematic
error for moving satellites. This paper puts forward a new centroid extraction method
based on anisotropic Gaussian surface fitting (AGSF) model which employs two different
Gaussian fuzzy parameters and a rotation factor. AGSF can characterize the features for
different directions and thus is suitable for the random direction blur caused by motion
of satellites. The numerical results from real data demonstrate that, AGSF can extract
the centers of the targets accurately, with positioning error 0.04 for real data.
Keywords: Moving target positioning, Gaussian surface fitting model, Star map, Posi-
tioning accuracy, Anisotropic Gaussian surface fitting

1. Introduction. The location information is a key feature for star-map targets recog-
nition. For instance, the position of stars can be used to identify stars by star library
matching [1,2]; the satellites location information is always used to estimate the orbit
information, which can be further used to identify satellites and orbit prediction.

However, it is of great difficulty to locate targets accurately in star maps. The star-
map imaging process has a significant point spread fuzzy (PSF) effect [3,4] caused by
factors such as hardware limitations of the sensor, the scattering effect of the lens and the
interference of the atmosphere. As a result, star-map targets appear as spots centered by
themselves but with certain degree of gray distribution to neighbor pixels. The commonly
used algorithms for the target location in star maps include the grayscale centroid (GC)
method [5-7], the weighted grayscale centroid (WGC) method [8-10], the Gaussian surface
fitting (GSF) method [11-13] and the Parabolic Surface Fitting (PSF) method [12]. The
GSF method is currently the most accurate centroid extraction technology. However, it
is only suitable for round-shape (or nearly round-shape) objects, and for instance stars,
since the model describes the point target diffusion effect. The traditional Gaussian model
cannot be used to extract the centroid of satellites because satellites have obvious linear
features due to the motion effect.

To address this issue, this paper proposes a new centroid extraction method based
on anisotropic Gaussian surface fitting (AGSF) model. The model employs two different
Gaussian fuzzy parameters to describe the linear characteristics, and also introduces a
rotation factor to characterize the random moving direction of satellites. It is shown that
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the traditional Gaussian surface fitting model is a special case of our model with two
equal Gaussian fuzzy parameters and zero rotation angle. Based on the advanced model,
the proposed method enables discovery of moving objects and unknown objects without
a priori knowledge about the target location, orientation, length, or surface brightness,
which the conventional techniques can hardly accomplish. We present the results from
the application of this method to real star maps. The result shows that the ASGF can be
applied to precisely positioning both the stars and the moving satellites and it outperforms
the compared techniques in terms of accuracy.

The rest of the paper is organized as follows. A detailed information of the proposed
method is provided in Section 2. The evaluation experiments on real star maps are
conducted in Section 3. Finally, Section 4 shows some remarking conclusions.

2. Anisotropic Gaussian Surface Fitting Centroid Extraction Method. Assum-
ing that f(x, y) is the brightness value of pixel (x, y) in image I and (x0, y0) is the center
of the target. The point spread function for GSF can be expressed as follows:

f(x, y) = A · exp

{
− 1

2σ2

[
(x − x0)

2 + (y − y0)
2
]}

(1)

where A is a fixed coefficient, which equals the brightness of the target center; σ is
the Gaussian function mean square error determined by the imaging conditions. The
GSF method has higher accuracy than other methods [14,15] and can achieve sub-pixel
accuracy. However, the conventional GSF method is only suitable for round-shape objects.

Figure 1 shows a real star map, in which the moving satellite targets are framed by
the rectangles. We can see that the targets have clear linear feature, which cannot be
characterized by Formula (1). To address this issue, this paper presents the anisotropic
Gaussian surface fitting method.

Star-map consists of mainly two categories of targets, namely, stars and moving satel-
lites. The stars have circular (or nearly circular) shapes since they can be considered
stationary in imaging time, as shown in Figure 2(a). On the other hand, satellites have
obvious linear features due to the large displacement in imaging time. Moreover, the
direction of the satellite trajectory is uncertain as the moving direction is random, which
may appear as the ones shown in Figure 2(b) or other angles.

From Figure 2, we can see that, to extract the centroid of the moving objects accurately,
two problems need to be addressed: (1) the moving targets have linear feature, and thus
the model has to quantitatively characterize the linear feature; (2) the moving direction
of targets is random, and thus the model needs to adapt to different moving directions.

In the traditional Gaussian surface fitting model, as shown in Formula (1), σ controls
the degree of the point diffusion effect, which determines the size of the diffused target. In

Figure 1. Real star map
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(a) (b)

Figure 2. Typical targets of star maps: (a) stars of round shape with
different sizes, (b) satellites having linear features with different directions
and different sizes

order to describe the linear feature of the target, we can use different σ parameters for x
direction and y direction respectively, which can make the target have different diffusion
effects in x direction and y direction. In this way, the vertical or horizontal linear feature
can be characterized by the different sizes of x direction and y direction.

Regardless of the moving direction, we first construct the centroid extraction model
with two different diffusion parameters in x and y directions, as follows:

f(x, y) = A exp

{
−1

2

[
(x − x0)

2

σ2
x

+
(y − y0)

2

σ2
y

]}
(2)

where A is a fixed coefficient, which equals the brightness of the target center; σx and σy

are the Gaussian function mean square errors of x direction and y direction respectively,
and (x0, y0) is the target centroid.

Taking the randomness of the moving direction into consideration, we introduce the
rotating coordinate system to enable the model to adapt to different moving directions.
Without loss of generality, we take the 60◦ moving direction as the example. The original
coordinate system is x-y; rotate the original coordinate system counterclockwise by 60◦,
and we obtain a new coordinate system x̂-ŷ. In the new coordinate system, the moving
direction of the target is horizontal, as shown in Figure 3. As for the other moving
directions, we can simply adjust the rotation angles correspondingly.

Figure 3. The random moving directions that can be characterized by
rotating coordinate system
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Assuming counterclockwise rotation is positive, the transform matrix from the original
coordinates to the new coordinate system is

Rθ =

[
cos θ sin θ
sin θ − cos θ

]
. (3)

By Formula (3), we can see that the coordinates of point (x, y) in the original coordi-
nates system is (x cos θ + y sin θ, x sin θ − y cos θ) in the new coordinate system. Substi-
tute the new coordinates into Formula (2), and we have:

f(x, y)

= A exp

{
−1

2

[
((x − x0) cos θ + (y − y0) sin θ)2

σ2
x

+
((x − x0) sin θ − (y − y0) cos θ)2

σ2
y

]}
,

(4)
where θ is the counterclockwise angle between the target moving direction and the hori-
zontal direction.

From the centroid extraction model expressed in Formula (4), it can be seen that
this model uses different diffusion parameters for the x direction and the y direction
respectively, which can characterize the linear feature of the target. At the same time,
the rotation angle θ is employed to describe the random moving directions of the target.
Interestingly, we can see that, when σx = σy and θ = 0◦, this model degrades to the
traditional Gaussian model as Formula (1). Therefore, the traditional Gaussian surface
fitting model is in fact a special case of our new model which is anisotropic and can be
applied to extracting the location of arbitrary star-map targets (stars or satellites).

In order to obtain the target centroid (x0, y0), we need to estimate all the parameters
in Formula (4) by observed star maps. In the following, we discuss the solving method
for Formula (4). Calculate the logarithm for both sides for Equation (4), and we have:

ln(f) = ln(A) − 1

2

[
((x − x0) cos θ + (y − y0) sin θ)2

σ2
x

+
((x − x0) sin θ − (y − y0) cos θ)2

σ2
y

]
.

(5)
It can be seen that Formula (5) is a quadratic function of x and y, and thus Equation

(5) can be expressed as:

ln(f) = t0 + t1x + t2y + t3xy + t4x
2 + t5y

2, (6)

where parameters t0, t1, t2, t3, t4, t5 can be obtained by Equation (5). When t0, t1, t2,
t3, t4, t5 are known, the six parameters in the model (Equation (4)) can be calculated as
follows: 
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Therefore, solving t0, t1, t2, t3, t4, t5 is the key point of the centroid extraction process.
At least six pixels are required to participate in the computation, since there are six
parameters unknown. Generally, the number of target and its dispersion pixels is greater
than six. As a result, Equation (6) is over-determined; we use the least square method
to calculate t0, t1, t2, t3, t4, t5. Assuming the coordinates of n target pixels are (xi, yi),
i = 1, 2, . . . , n and the corresponding gray values are fi, we construct the following n × 6
matrix:

B =


1 x1 y1 x1y1 x2

1 y2
1

1 x2 y2 x2y2 x2
2 y2

2

...
...

...
...

...
...

1 xn yn xnyn x2
n y2

n

 . (8)

Let t = [t0, t1, t2, t3, t4, t5]
T , and then Equation (6) can be expressed as follows:
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ln fn
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Let f = [ln f1 ln f2 · · · ln fn]T , and we can solve t according to Equation (9) as follows:

t =
(
BTB

)−1
BT f . (10)

Based on the intermediate parameter t0, t1, t2, t3, t4, t5, the target centroid can be
finally calculated using Formula (7).

In summary, the steps of using AGSF to extract the target centroid are listed as follows:
1) constructing the parameter matrix B by using Formula (8);
2) computing the logarithm of the pixels to construct the vector f ;
3) calculating the intermediate parameters t0, t1, t2, t3, t4, t5 according to Formula

(10);
4) calculating the model parameters according to Formula (7), where (x0, y0) is the

centroid coordinate of the target.
It is worth noting that this method requires calculating six parameters in the anisotropic

Gaussian model. Thus the targets need to occupy at least six pixels, and in most cases,
they can meet the requirement. If the target is less than six pixels, the bilinear interpola-
tion method [16] can be used first to interpolate the target pixels, and then this method
can be used to extract the centroid.

3. Real Data Experiments. The real star maps used in this experiment are acquired
by the large field (4.8◦) 600mm aperture optical telescope of the Chinese Academy of
Sciences. The software platform is Matlab 2010, and the hardware configuration is Intel
dual-core 2.4G CPU and 1G memory. The astronomical positioning computer is a portable
industrial computer equipped with P4 3.0 CPU. Levelling and north-seeking operation
have been done to the equipment before acquiring the star maps. The data used in this
experiment contains 60 frames of CCD images, with spatial size of 512× 512 pixels. Two
denoised frames are shown in Figures 4(a) and 4(b).

In this paper, the performances of the centroid technologies are compared in the fol-
lowing way. The centroid extraction results of each method have different levels of errors,
which are random in different frames. Therefore, for the same stationary target (star),
the method with larger positioning error must obtain more dispersive results from the
60-frame images, which is characterized by larger variances. Thus, the variance of the
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(a) (b)

Figure 4. The original map: (a) the first frame, (b) the second frame

results from the 60-frame images for each method is adopted as the metric to measure
the performance of these techniques. Smaller variance corresponds to higher accuracy.

It is noteworthy that the above comparison method can be used only to compare the
accuracy of the stationary star targets. As for the satellite targets, the comparison is
performed as follows. The motion trajectory of satellites can be approximately deemed as
a straight line. Thus we first use the results obtained by these three methods to linearly
fit the motion trajectory of the satellites. The estimated positions of the satellites in
each image are regarded as the “true” positions. Then the error between the extracted
positions and the real positions for each method is calculated, which can be used as the
measure of the positioning accuracy of the satellite targets.

There are totally 317 targets in this data, among which 315 are stars and 2 are moving
satellites. Each method has 60 centroid extraction results for each target. The results
for one star are shown in Figure 5(a). The results for one satellite and trajectory fitting
are shown in Figure 5(b). The positioning errors of the satellite for different methods are
shown in Figure 5(c).

It can be seen from Figure 5(a) that, all the methods have some errors in terms of
positioning the star. The error of the WGC method is the largest while that of the AGSF
method is the least, implying that our method can improve the positioning accuracy of the
stars. From Figure 5(b), we can see that, the trajectory of the satellite is approximately
a straight line, and it is difficult to evaluate these methods only from the trajectory
figure. The positioning errors shown in Figure 5(c) demonstrate that, WGC and GSF
have larger errors in satellite positioning and the error of AGSF is much lower. To
quantitatively evaluate the performances of these techniques, we calculate the mean values
of the variances of positioning results of 315 stars and positioning errors of two satellites,
as shown in Figure 6.

As shown in Figure 6, the positioning errors of stars for WGC, GSF and AGSF are
0.2647, 0.1153 and 0.0401 respectively while that of moving satellite targets are 0.2970,
0.3178 and 0.0425 respectively. It also can be seen that, compared to stars, the positioning
accuracy of these methods on satellites are lower, which can be attributed to the motion
effects of satellites. Moreover, the positioning error of satellites is significantly higher than
that of the stars for GSF. As previously analyzed, the reason is that the GSF model does
not adapt to moving satellite targets which leads to notable systematic errors.

4. Conclusions. This paper proposes a new centroid extraction algorithm for star-map
targets based on anisotropic Gaussian surface fitting (AGSF). By using an anisotropic
Gaussian model, AGSF can be applicable to both the moving satellites and the stationary
stars, overcoming the problem of the traditional Gaussian surface fitting model that it is
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(a) (b)

(c)

Figure 5. Results of real data: (a) center extraction results from different
methods for one star, (b) the positioning results for one satellite and the
trajectory fitting result, (c) centroid errors of each method for the satellite

Figure 6. Real data test: from left to right the average error of all targets,
the satellite targets and the star targets of each method

suitable only for circular targets. The real data experiments demonstrate that the AGSF
can accurately extract the centroids of star targets and satellite targets in star maps, with
the overall positioning accuracy 0.04 pixel. Compared with traditional methods, AGSF
greatly improves the positioning accuracy of star-map targets, especially for satellites. In
addition, the quantitative evaluation method for real data which has no true values is
also a valuable reference for other studies. Future study may focus on the efficiency issues
since the AGSF model has higher computational complexity than traditional methods.
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