
ICIC Express Letters ICIC International c⃝2017 ISSN 1881-803X
Volume 11, Number 6, June 2017 pp. 1053–1061

OPTIMIZING PARTITION THRESHOLDS
IN SPECULATIVE MULTITHREADING

Yuxiang Li, Yinliang Zhao, Liyu Sun and Mengjuan Shen

School of Electronic and Information Engineering
Xi’an Jiaotong University

No. 28, Xianning West Road, Xi’an 710049, P. R. China
liyuxiang19841203@163.com; zhaoy@mail.xjtu.edu.cn; { 858115052; 980624675 }@qq.com

Received December 2016; accepted March 2017

Abstract. Thread-level speculation (TLS) is an automatic parallelization technique for
serial programs on multicore platforms, and it permits to generate multiple threads during
compiling as well as to run them at runtime. Thread partition plays an important role
in TLS. Heuristic rules-based (HR-based) partition and machine learning-based (ML-
based) partition are two commonly used approaches. During the partition of these two
approaches, what seriously affect the partition effect are five thresholds, i.e., upper limit of
spawning distance (ULoSD), lower limit of spawning distance (LLoSD), data dependence
count (DDC), upper limit of thread granularity (ULoTG), lower limit of thread granu-
larity (LLoTG). This paper proposes to optimize these five thresholds with a level-based
traversal method, in order to find the optimal partition thresholds for every procedure,
so as to obtain the optimal partition. Prophet, which consists of an automatic partition
compiler and a simulator, is used to perform partition and achieve speedups. Experimen-
tal results show that 11 Olden benchmarks obtain speedup improvements.
Keywords: Thread-level speculation, Partition threshold, Optimization

1. Introduction. Speculative multithreading [1,2] (SpMT), also called thread-level spec-
ulation (TLS), is a promising technique which allows to parallelize sequential codes aggres-
sively, without considering too much about the success of execution, which is guaranteed
by hardware. Compared to manual parallelization, SpMT accelerates irregular sequen-
tial programs with lower cost and fewer user interactions, as well as has a wide range of
applications [3].

Thread partition plays an important role in SpMT. Liu et al. [2] used a machine learning
method to perform thread partition. Tang et al. [4] presented a new heuristic algorithm
based on an interesting extension of the classical list scheduling algorithm. Based on a cost
model, the algorithm groups instructions into threads by considering the trade-offs among
parallelism, latency tolerance, thread switching costs and sequential execution efficiency.
Li et al. [5] made use of artificial neural network to predict thread partition. Compared to
the thread partitions using machine learning, cost model, etc, heuristic rules-based thread
partition has the advantages: simplicity, easy to handle, strong practicability.

As the commonly used partition approach, HR-based thread partition and ML-based
thread partition severely depend on the specific thresholds of thread granularity, data de-
pendence count, spawning distance, etc. Conventional approaches set the specific thresh-
olds solely by experience, easily resulting in missing the optimal values. This paper
overcomes this problem with the level-based traversal method, in which we traverse al-
most all the points in the solution space, which is extended by the five thresholds, so as
to find the optimal point.

The remaining paper is structured as follows. Section 2 gives the motivation, Section
3 shows the overall framework, and Section 4 shows the experiment and analysis. The
conclusion and future work are given in the Section 5.

1053

1054 Y. LI, Y. ZHAO, L. SUN AND M. SHEN

0.00

0.50

1.00

1.50

2.00

2.50

Speedups vs Partition Schemes
Speedups

Figure 1. Speedups vs 13 partition schemes in health(). This figure shows
that it is important to set the right partition thresholds.

2. Motivations. This section illustrates that optimizing the partition thresholds in SpM-
T has a significant impact on performance.

In Figure 1, the x-axis shows 13 groups of partition thresholds (ULoSD, LLoSD, DDC,
ULoTG, LLoTG) for benchmark health(), while the y-axis shows the speedups obtained for
these partition thresholds. We see from this figure that changes of partition thresholds can
lead to changes of speedups. The maximum speedup is 2.1, while the minimum speedup
equals 1.1, so the speedup obtained from the optimal partition thresholds is almost two
times the speedup from the worst partition thresholds.

This simple example illustrates that selecting the optimal partition thresholds has a
significant performance impact, and obtaining the optimal partition thresholds needs
a searching process. Prior researches have already managed to find a group of better
partition thresholds for a specific benchmark by experience. Therefore, it is crucial to
apply the optimal partition thresholds for a specific program, and we apply a level-based
traversal method to finding them.

3. Framework.

3.1. Basic idea. To provide the separate optimal partition thresholds for different pro-
grams, we use the level-based traversal method to build the generator, which is used
together with Prophet compiler and simulator simultaneously. Figure 2 shows the over-
all framework of optimizing partition thresholds on Prophet. The bold words illustrate
the part of level-based traversal method, while the other parts are classified into Prophet.
This section describes how the thresholds of thread partition can be optimized in Prophet.

SUIF Front-end

+

Optimizer

Prophet Simulator
Procedure

Profiler

Thread

Partitioner

MachSUIF

Back-end

Comparison

and Find the

Optimal

Thresholds

SUIF

IR
Pr

Threaded

ProgramMIPS

Program

Profile

Information

timizer

SUIF

IR

Repeated Estimation

level-based

traversal

method

1 2

Figure 2. Overall framework of optimizing partition thresholds on
Prophet [6, 7]

ICIC EXPRESS LETTERS, VOL.11, NO.6, 2017 1055

Once a procedure is entered, the first step is preprocessing, which primarily contains
SUIF front-end, optimizer, MachSUIF back-end as well as Profiler. After preprocessing,
mips codes are generated for thread partitioner, providing which thresholds seriously affect
thread partitions. Moreover, level-based traversal method provides all possible partition
thresholds for partitioner. After partitioning, threaded codes are entered into Prophet
simulator to obtain speedups. We reserve and compare all possible partition thresholds
and their corresponding speedups, so as to find the optimal partition thresholds which
correspond to the biggest speedup.

3.2. Optimization code. Figure 3 shows the simple implementation code of level-based
traversal method. During this code, five for loops are used to traverse all possible points
in the solution space, which is built by these five thresholds. Within the code, ULoSD,
LLoSD, DDC, ULoTG, LLoTG are partition thresholds to be optimized. Note that the
maximum values and minimum values of five thresholds are given by experience, and
shown in Table 1.

For(LLoSD=3;LLoSD<=9;LLoSD+=1);do

For(ULoSD=3;ULoSD<=15;ULoSD+=1);do

For(DDC=12;DDC<=32;DDC+=1); do

For(LLoTG=3;LLoTG<=9;LLoTG+=1);do

For(ULoTG=20;ULoTG<=50;ULoTG+=1);do

Compiler//perform compiling and execute the whole procedure,

obtaining the speedup of every sub-procedure, updating the

speedup of whole procedure.

End End End End End

Figure 3. Simple implementation code of level-based traversal method

Table 1. Traverse range of partition thresholds

threshold name lower limit upper limit
DDC 3 9

LLoTG 3 15
ULoTG 12 32
LLoSD 3 9
ULoSD 20 50

3.3. Optimization sequence. We adopt the level-based optimization method, in which
we firstly build a function call tree, and then traverse all nodes from the leaf to root.
Figure 4(a) shows the function call graph of benchmark perimeter(). The arrays in the
tree represent function call relations. The procedure main() is the root node, while
alloc tree(), dealwithargs(), Checkoutside(), child(), adj (), and reflect() are all leaf nodes.

In order to obtain an overall optimal speedup for a procedure, we need use the level-
based traversal method to realize that every sub-procedure obtains their optimal partition
thresholds. In the level-based traversal method, the most important point is the optimiza-
tion sequence of all sub-procedures. To handle this issue, we adopt a level-based statistic.
Figure 4(b) shows the four levels of perimeter(), and the thick black arrays indicate the
optimization sequence. All the sub-procedures with the same level have no fixed sequence.
The sub-procedures in level 1 are firstly optimized, and then level 2, level 3, level 4.

The leaf nodes are firstly optimized, and then their optimization thresholds are all
reserved. While partitioning all sub-procedures (in leaf nodes), we make use of their
respective optimization thresholds. Then, we start to optimize the partition thresholds

1056 Y. LI, Y. ZHAO, L. SUN AND M. SHEN

main MakeTree CheckIntersect Checkoutside

perimeter sum_adjacent child

Gtequal_adj_neighbour adj

reflect

alloc_tree

dealwithargs

(4,0) (1,1) (1,1) (0,1)

(1,1)(3,1)

(0,1)

(0,1)

(3,1)

(0,3)

(0,1)

(0,1)

(a)

main MakeTree CheckIntersect Checkoutside

perimeter sum_adjacent child

Gtequal_adj_neighbour adj

reflect

alloc_tree

dealwithargs

main MakeTree

perimeter

CheckIntersect

sum_adjacent

Gtequal_adj_neighbour

Checkoutside

child

adj

reflect

alloc_tree

dealwithargs

Level 4 Level 3 Level 2 Level 1

(b)

Figure 4. (a) Function call graph of perimeter(), the numbers in brackets
are separately calling time and called time of sub-procedures; (b) levels of
perimeter()

of all sub-procedures (in the level 2) while not changing the reserved optimization results
in the level 1. Finally, we obtain the overall optimal thresholds of all levels.

3.4. Optimization times. According to the basic framework shown in Figure 2, we need
implement all the modules in this figure to complete a traversal. However, it is a waste
of time to finish all traversals. Table 1 shows the traversal ranges of five thresholds in
benchmark bh(). If we set step size 1, the traversal time of five thresholds is calculated
in Formula (1):

(max(LLoSD) − min(LLoSD) + 1) ∗ (max(ULoSD) − min(ULoSD) + 1)

∗ (max(ULoTG) − min(ULoTG) + 1) ∗ (max(LLoTG) − min(LLoTG) + 1)

∗ (max(DDC) − min(DDC) + 1)

= (9 − 3 + 1) ∗ (50 − 20 + 1) ∗ (15 − 3 + 1) ∗ (32 − 12 + 1) ∗ (9 − 3 + 1)

= 7 ∗ 31 ∗ 13 ∗ 21 ∗ 7 = 414687

(1)

ICIC EXPRESS LETTERS, VOL.11, NO.6, 2017 1057

Table 2. Level and execution times of sub-procedures in perimeter()

sub-procedure name level execution times
main() 4 1
perimeter() 3 245
MakeTree() 3 245
Gtequal adj neighbour() 2 1088
CheckIntersect() 2 245
sum adjacent() 2 120
adj () 1 1056
reflect() 1 840
child() 1 920
Checkoutside() 1 1305
alloc tree() 1 245
dealwithargs() 1 1

There are overall four levels, so the whole traversal times are 414687 ∗ 4 = 1658748. If
the time spent in running a time of bh() is 70.2 seconds, then the time taken to finish the 4
levels is about 1347.7 days. This result is difficult to accept. To deduce the execution time
as well as not to miss the optimal thresholds, we adopt a level-based traversal method:

• We manage to control the step size of every threshold, to make the consuming time
of overall execution acceptable;

• Near the approximate optimal thresholds, we start to conduct a precision search
with the level-based traversal method.

4. Experiment and Analysis.

4.1. Experiment configuration. We implement the execution model as well as thread
partition algorithm on Prophet [6, 7], which is based on SUIF/MACHSUIF [8]. We com-
plete the compiler analysis at the level of SUIF’s intermediate representations. The profil-
ing information is extracted from SUIF-IR in the form of annotations. The SUIF programs
which are interpreted and executed by profiler provide information, including dynamic in-
struction number, control flow path prediction, and data value prediction. The Prophet
simulator simulates 8 pipelined mips-based R3000 processing elements (PEs). This sim-
ulating process is an execution-driven simulation, which executes binaries generated by
Prophet compiler. Every PE fetches and executes instructions from one thread, and or-
derly issues 4 instructions per cycle. Every PE owns a private multiversion L1 cache,
which has latency of 2 cycles. Speculative results of PE are buffered and cache commu-
nication is performed via multiversion L1 caches. With a snoopy bus, a write-back L2
cache is shared by the 8 PEs. The simulator’s parameter configuration is shown in Table
3.

4.2. Step setting. To optimize the partition thresholds as well as reduce the execution
time of level-based traversal method, we set step size in accordance with the called times
of every sub-procedure, which are the 2nd numbers in the brackets of Figure 4. In order
to optimize partition thresholds, we take three measures: numbering every sub-procedure,
ranking, and setting steps.

4.2.1. Numbering every sub-procedure. To set an appropriate step size for every sub-
procedure (shown in Figure 4), we need firstly number every procedure. We assign every
procedure with an ID from 1 to n (n ∈ N), which are shown in the 1st column of Table
4.

1058 Y. LI, Y. ZHAO, L. SUN AND M. SHEN

Table 3. The configuration of Prophet (per PE)

Parameters of configuration Value
Bandwidth for Fetch, In-order Issue

4 Instructions
and Commit
Pipeline Stages Fetch/Issue/Ex/WB/Commit
Architectural Registers 4 int and 4 fp
Function Units 4 int ALU (1 Cycle)

4 int Mult/Div (3/12 Cycles)
4 fp ALU (2 Cycles)
4 fp Mult/Div (4/12 Cycles)

L1-Cache (Multiversioned) 4-Way Associative 64KB (32B/Block)
Hit Latency 2
LRU Replacement

Spec. Buffer Size Fully Associative 2KB (1 Cycle)
L2-Cache 4-Way Associative 2MB (64B/Block)

5 hit latency, 80 Cycles (miss)
LRU replacement

Spawn Overhead 5 Cycles
Validation Overhead 15 Cycles
Local Register 1 Cycle
Commit Overhead 5 Cycles

Table 4. Level, called time, rank, and step size of sub-procedures in perimeter()

ID sub-procedure name level called time rank step size
1 child() 1 3 1 (1,1,1,1,1)
2 perimeter() 3 1 2 (2,2,2,2,2)
3 MakeTree() 3 1 2 (2,2,2,2,2)
4 Gtequal adj neighbour() 2 1 2 (2,2,2,2,2)
5 CheckIntersect() 2 1 2 (2,2,2,2,2)
6 sum adjacent() 2 1 2 (2,2,2,2,2)
7 adj () 1 1 2 (2,2,2,2,2)
8 reflect() 1 1 2 (2,2,2,2,2)
9 Checkoutside() 1 1 2 (2,2,2,2,2)
10 alloc tree() 1 1 2 (2,2,2,2,2)
11 dealwithargs() 1 1 2 (2,2,2,2,2)
12 main() 4 0 3 (3,3,4,3,3)

4.2.2. Ranking. Table 4 shows the step setting of every sub-procedure. In the 2nd col-
umn of the table, 12 sub-procedures of Figure 4 are shown. After numbering every sub-
procedure, we start to rank all sub-procedures in accordance with the called time. The
sub-procedure with maximum called time is child(), which owns 3 called time, so we assign
child() with rank 1. Similarly, we assign sub-procedures perimeter(), MakeTree(), Gte-
qual adj neighbour(), CheckIntersect(), sum adjacent(), adj (), reflect(), Checkoutside(),
alloc tree(), dealwithargs() with rank 2, as they have 1 called time. Finally, we assign
main() with rank 3, as it has 0 called time.

4.2.3. Setting steps. According to rank number i (i = 1, 2, 3, . . .) of every sub-procedure,
we set the step size of the jth (j = 1, 2, 3, 4, 5) thresholds with the ith common divisor
(the 1st common divisor is 1) of difference value between the maximum value of the jth
threshold and the minimum value of the jth threshold.

ICIC EXPRESS LETTERS, VOL.11, NO.6, 2017 1059

For((currentlevel=1;currentlevel<=mainlevel;currentlevel+=1));do

step0=f(0);step1=f(1);step2=f(2);step3=f(3);step4=f(4);

For(LLoSD=3;LLoSD<=9;LLoSD+=step0); do

For(ULoSD=3;ULoSD<=15;ULoSD+=step1);do

For(DDC=13;DDC<=32;DDC+=step2);do

For(LLoTG=3;LLoTG<=9;LLoTG+=step3);do

For(ULoTG=20;ULoTG<=50;ULoTG+=step4);do

compile

End End End End End End

Figure 5. Optimization code

Assume the step size of the jth (j = 1, 2, 3, 4, 5) threshold of sub-procedure with rank
number i is Y (j), and then the calculation of Y (j) is in Formula (2).{

Y (j) = the ith common divisor of difference value between maximum of the jth

threshold and minimum of the jth threshold, where, i = 1, 2, 3, . . . ; j = 1, 2, 3, 4, 5.
(2)

Taking sub-procedure dealwithargs() for example, it has 1 called time. Then we cal-
culate the difference values of five thresholds, i.e., 6 (9 − 3 = 6), 12 (15 − 3 = 12), 20
(32− 12 = 20), 6 (9− 3 = 6), 30 (50− 20 = 30). Moreover, we calculate the 2nd common
divisor of every difference value since dealwithargs() has rank number 2, and obtain the
results: (2, 2, 2, 2, 2). Namely the step sizes of every threshold in dealwithargs() are
respectively 2, 2, 2, 2, 2.

4.3. Optimization process.

4.3.1. Optimization setting. Taking benchmark perimeter() for example, we have ob-
tained the level, step size of every threshold. Table 4 shows the step size and specific
execution times for every sub-procedure.

4.3.2. Optimization code. As the threshold changes are correlated with level and step size,
we design the level-based traversal method, which considers these two factors. Before
traversing all the sub-procedures of one level, we control the step sizes in this level so
that traversing time of every level decreases with the rising of level number. Moreover,
we emphasize on traversing the lowest two levels. The specific optimization code is shown
in Figure 5, in which step0, step1, step2, step3, step4 are the optimized step sizes of five
thresholds.

4.4. Results of optimization. Table 5 shows the level, step size, and execution times
of sub-procedures in health(). th1, th2, th3, th4, th5 respectively denote DDC, LLoSD,
ULoSD, LLoTG, ULoTG. The bold part in Table 5 represents the final speedup after opti-
mization, while the italic part represents the initial speedup before optimization. Similar
to perimeter(), we perform optimizations of partition thresholds for other benchmarks,
and show speedup comparisons in Figure 6.

From Table 5, we can see that health() has speedup improvement when all sub-procedur-
es have speedup improvements, as every sub-procedure has an optimal partition threshold.
In Figure 6, all benchmarks obtain speedup improvements after optimization of partition
thresholds.

1060 Y. LI, Y. ZHAO, L. SUN AND M. SHEN

Table 5. Step size of every threshold, and speedups of sub-procedures in health()

sub-procedure Name th1 th2 th3 th4 th5 speedups
dealwithargs() 3 3 12 9 20 1.33333
my rand() 9 3 12 3 21 1.54245
generate patient() 9 3 12 3 44 1.44414
put in hosp() 3 3 12 3 21 1.37478
addList() 3 3 12 3 20 1.23843
removeList() 3 5 12 3 20 1.1175
sim() 8 3 12 3 45 1.69066
check patients inside() 3 5 12 3 20 1.64539
check patients assess() 7 3 12 3 20 1.5439
check patients waiting() 6 3 12 3 22 1.88305
get results() 8 3 12 3 45 1.67068
main() 5 3 12 7 44 1.89326

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Speedup comparisons before and after optimization

initial speedup speedup after optimization

Figure 6. Speedup comparisons before and after optimization of partition thresholds

5. Conclusion and Future Work.

5.1. Conclusion. In this paper, we propose an optimization approach of thread partition
thresholds for HR-based and ML-based thread partitions, to improve the efficiency of
thread partition. The novelties of this paper can be concluded as follows.

• Five thresholds, which seriously influence thread partition are extracted.
• A level-based traversal method is proposed to realize the optimization of partition

thresholds.
• To improve the optimization efficiency, we adopt a method of adaptive step setting.

In conclusion, all Olden benchmarks obtain performance improvements.

5.2. Future work. In this paper, the speedups obtained by threshold optimization can
be used to evaluate the merits of the obtained thresholds, and the obtained speedups can
be seen as the speedups of samples. We need to use the machine learning algorithm to
make the actual speedups of unknown programs be as close as the speedups of samples.
The future work is summed up in the following aspects:

• Better search algorithms are needed to reduce the time of obtaining the optimal
thresholds;

• The rules for changing thresholds will be summarized, so that future work of adjust-
ing thresholds can follow these rules.

ICIC EXPRESS LETTERS, VOL.11, NO.6, 2017 1061

Acknowledgement. We thank our 3C laboratory for their great support during our
work. We give our best hope to all our colleagues of laboratory for their collaboration.
We also give our thanks to reviewers for their careful comments and suggestions. This
work is supported by Doctoral Fund of Ministry of Education of China under Grant
No. 2013021110012 and National Natural Science Foundation of China through Grant
No. 61173040.

REFERENCES

[1] A. Estebanez, D. R. Llanos and A. Gonzalez-Escribano, A survey on thread-level speculation tech-
niques, ACM Computing Surveys (CSUR), vol.49, no.2, 2016.

[2] B. Liu, Y. Zhao, X. Zhong, Z. Liang and B. Feng, A novel thread partitioning approach based on
machine learning for speculative multithreading, The 15th IEEE International Conference on High
Performance Computing and Communications & IEEE International Conference on Embedded and
Ubiquitous Computing (HPCC EUC), pp.826-836, 2013.

[3] D. Bader, Analyzing Massive Social Networks Using Multicore and Multithreaded Architectures,
Springer-Verlag, 2010.

[4] X. Tang, J. Wang, K. Theobald and G. R. Gao, Thread partition and schedule based on cost model,
Proc. of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures, Newport, Rhode
Island, 1997.

[5] Y. Li, Y. Zhao and H. Gao, Using artificial neural network for predicting thread partitioning in specu-
lative multithreading, The 17th IEEE International Conference on High Performance Computing and
Communications (HPCC), the 7th IEEE International Symposium on Cyberspace Safety and Security
(CSS), and the 12th IEEE International Conference on Embedded Software and Systems (ICESS),
pp.823-826, 2015.

[6] Z. Chen, Y. Zhao, X. Pan, Z. Dong, B. Gao and Z. Zhong, An overview of Prophet, International
Conference on Algorithms and Architectures for Parallel Processing, pp.396-407, 2009.

[7] S. Song, Y. Zhao, B. Feng, Y. Wei, X. Wang and H. Zhao, Prophet+: An extended multicore simulator
for speculative multithreading, Journal of Xi’an Jiaotong University, vol.44, no.10, pp.13-15, 2010.

[8] R. P. Wilson, R. S French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K. Tjiang, S.-W.
Liao, C.-W. Tseng, M. W. Hall, M. S. Lam et al., SUIF: An infrastructure for research on parallelizing
and optimizing compilers, ACM Sigplan Notices, vol.29, no.12, pp.31-37, 1994.

