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Abstract. Photovoltaic (PV) generator employed application systems have been widely
developed in industrial fields. This paper presents a novel robust converter control ap-
proach for DC electric motor systems with PV power generators. Firstly, we mathemat-
ically express its nonlinear time-varying system model with a state-space representation
and propose a model reference based control approach against random output voltage of
PV generators. Next, an adaptive parameter estimation algorithm is analytically derived
by using a well-known Lyapunov stability theorem. We carry out numerical simulation
to demonstrate reliability of the proposed control approach and superiority with respect to
robustness against random PV power excitation through a comparative study in which a
conventional state feedback control methodology is applied in the simulation example as
well.
Keywords: PV generator, Robust control, Boost converter, Lyapunov theory, Parame-
ter estimation

1. Introduction. Photovoltaic (PV) power generators have been widely employed over
the world because it is significantly regarded as the best alternative energy system [1,2].
Until now, there are many research issues in terms of PV generator applications including
effective power converters, electric power storage systems, high quality solar cell mod-
ules, and so on. Qi et al. proposed the global peak area (GPA) methodology which is
aimed to improve a management technique against PV modules with temporary shad-
ows [3], and Zhu et al. developed an effective management technique in electric battery
charges for stand-alone PV systems and devised a three-port power converter to improve
energy equivalent controls of them [4]. Moreover, Simon and Das addressed an incremen-
tal conductance concept for power converters in which the inductance and capacitance
are additionally installed to improve maximum output power quantity [5]. Sivakumar et
al. developed an effective control algorithm for DC-DC converter systems with nonlinear
dynamic loads to seek a maximum output power in PV generator applications [6]. More
recently, Brenna et al. addressed a control strategy of battery storage systems for dis-
patching a photovoltaic generation farm and developed a neural network based predictive
model to estimate the solar irradiation and load power consumption [7]. We recognize
from these literature reviews that they mostly dealt with PV power system as determin-
istic dynamics. However, this is rarely acceptable practically in that the output power of
PV systems is obviously random because it is a function of solar radiation and ambient
temperature that are hardly deterministic.

We investigate a novel control approach for DC-DC power converters with PV power
excitation. Such control objective is a robust regulation of its velocity under random
output power from PV generators. We first express a state-space representation for an

1063



1064 H. C. CHO AND C. B. SHIN

integrated system model including the PV generator, the boost converter, and the DC
electric motor. Next, we apply a model reference control mechanism to design our pro-
posed control framework and employ a well-known Lyapunov stability theory [8] to derive
adaptive control parameter estimation. From this computation, control parameter vector
is adjusted based on an error between actual system states and reference system states.
Finally, a numerical simulation is carried out to demonstrate reliability of the proposed
converter control approach and a comparative study is additionally accomplished to prove
its superiority by comparing results from a conventional state feedback control method.

A remainder of this paper is organized as follows. Section 2 presents a state-space
representation about integrated DC motor control systems with PV power generators.
Section 3 and Section 4 describe the proposed control framework for such dynamic system
and its parameter estimation algorithm through mathematical procedures respectively.
We provide numerical examples to test reliability of the proposed control approach, and
describe comparative study to prove its superiority in Section 5. Lastly, conclusions and
future work are respectively offered in Section 6.

2. System Model. An electric circuit model of DC-DC boost converter [9] based con-
trol systems of DC electric motors with PV power excitation considered in this paper is
illustrated in Figure 1. Here, Vpv(t) and ipv(t) are the output voltage and current with
a continuous time index t from PV generators, vo(t) is the inverter output voltage regu-
lated by a control input variable u(t), L and C are the inductance and the capacitance
in a converter circuit model. In the electric motor system model, Ra and La are the
resistance and inductance, ia(t) is the armature current, ω(t) is its rotor velocity, TL is
a load torque, and Jm is an inertia coefficient. Apparently, this configuration is mainly
composed of three system parts including the PV generator, the power inverter, and the
electric motor. We simply assume that they are electrically connected in series without
any electric loss among its linkages. We mathematically express such integrating system
model to a state-space representation as

ẋ(t) = Ax(t) + B(t)u(t) + W (t) (1)

where a state vector x(t) = [ipv(t) vo(t) ia(t) ω(t)]T and corresponding matrices are given
by

A =


0 − 1

L
0 0

1
C

− 1
C

0 0

0 1
La

−Ra

La
− 1

La

0 0 1
Jm

− 1
Jm

 , B(t) =


1

− iL(t)
C

0
0

 , W (t) =


Vpv(t)

L

0
0

− TL

Jm


It is obvious that this system model in (1) involves time-varying and nonlinear dynamics

because of the input matrix B(t) including the current ipv(t). And the time-varying matrix
W (t) contains the output voltage of PV generators which can be regarded as a random

Figure 1. An electric circuit model for boost converter based control of
DC motor systems with PV generators
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variable since its quantity is dependent upon solar radiation and ambient temperature.
Consequently, a dynamic behavior of such system requires adaptive robust control strategy
to obtain acceptable control performance.

3. Control Design. We apply a model reference control approach to our control strategy
stated in Section 2. To carry out this task, a reference system model with the same
dimension to an actual system model in (1) is first defined as

ẋm(t) = Amxm(t) + Bmr + Wm(t) (2)

where xm ∈ R4 and r ∈ R are state vector and reference input scalar, and the corre-
sponding matrices are given as Am ∈ R4×4, Bm ∈ R4×1, and Wm ∈ R4×1. A control
objective is that a state vector of an actual system dynamically traces one of a reference
system model under a given control law given by

u(t) = −K∗x(t) + l∗r (3)

where K∗ ∈ R1×4 and l∗ ∈ R are optimal control parameter matrix and scaler respectively.
With an assumption that Wm = W , we substitute (3) to (1) and then have

ẋ(t) = (A − BK∗)x(t) + B(t)l∗r + Wm(t) (4)

From this dynamic equation in (4), we recognize that if we have A − BK∗ = Am and
B(t)l∗ = Bm, a state x(t) dynamically traces a reference state xm(t) and an equilibrium
value of x becomes xm(∞) under assumption that a reference system model is stable. This
simple concept is realized by estimating proper parameters K and l through numerical
method.

4. Adaptive Parameter Estimation. This section describes a mathematical procedure
to derive adjustment rules for control parameters K and l. We rewrite a control law
composed of these two parameters as

u(t) = −K(t)x(t) + l(t)r (5)

A proper estimation algorithm should be accomplished for which the parameters K(t)
and l(t) become the optimal parameters K∗ and l∗ against given system environment.
Likewise, we substitute (5) to (1) and then expand as

ẋ = Ax + B(−Kx + lr) + W
= (A − BK)x + Blr + B(K∗x − l∗r + u) + W
= Amx + Bmr + B(K∗x − l∗r + u) + W

(6)

Next, we define a state error ex between actual and reference states, and two parameter
errors eK and el between estimated and optimal values, mathematically are expressed as

ex = x − xm, eK = K − K∗, el = l − l∗ (7)

We apply a well-known Lyapunov stability theory for this parameter estimation rule.
Thus, a positive definite Lyapunov function should be necessarily defined including error
variables in (7) as

V = eT
x Pex + tr

[
eT

KγeK + eT
l γel

]
(8)

where tr denotes the matrix trace, P ∈ R4×4 is a positive definite matrix, and γ is a
non-negative scalar. To designate a positive parameter γ, we let its inverse as

γ−1 = l∗sgn(l∗) (9)

where sgn(l∗) denotes a sign of the variable l∗. Next, we differentiate a Lyapunov function
in (8) and then have

V̇ = ėT
x Pex + eT

x P ėx + tr
[
ėT

KγeK + eT
KγėK + ėT

l γel + eT
l γėl

]
(10)
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By employing (2) and (6), we calculate a derivative of the state error function in (7) as

ėx = ẋ − ẋm = Amx + Bmr + B(K∗x − l∗r + u) + Wm − Amxm − Bmr − Wm

= Amex + B(K∗x − l∗r − Kx + lr) = Amex + B(−eKx + elr)
= Amex + Bml∗−1(−eKx + elr)

(11)
We simply substitute the resulting equation in (11) to the first two terms in the right part
of (10) and then obtain

ėT
x Pex + eT

x P ėx

= [Amex + Bml∗−1(−eKx + elr)]
T Pex + eT

x P [Amex + Bml∗−1(−eKx + elr)]

= eT
x P T [Amex + Bml∗−1(−eKx + elr)] + eT

x P [Amex + Bml∗−1(−eKx + elr)]

= eT
x

(
P T + P

)
[Amex + Bml∗−1(−eKx + elr)]

= eT
x

(
PAm + AT

mP
)
ex + 2eT

x PBml∗−1(−eKx + elr)
(12)

From a well-known Lyapunov stability theory, if we select P = P T , the Lyapunov equa-
tion in (12) is expressed as

PAm + AT
mP = −Q (13)

where a matrix Q = QT is positive definite. By applying (13) to the last term of (12),
we rewrite

ėT
x Pex + eT

x P ėx = −eT
x Qex + 2eT

x PBml∗−1(−eKx + elr) (14)

where l∗−1 = γsgn(l∗) from (9). Thus, Equation (14) is rewritten as

ėT
x Pex + eT

x P ėx = −eT
x Qex − 2eT

x PBmγeKxsgn(l∗) + 2eT
x PBmγelrsgn(l∗) (15)

Furthermore, we apply a matrix trace theory to the second and third terms in the right
part of (15) and then expand respectively as

−2eT
x PBmγeKxsgn(l∗) = −2tr

[
xT eT

KγBT
mPex

]
sgn(l∗)

= −2tr
[
eT

KγBT
mPexxT

]
sgn(l∗)

(16)

and

2eT
x PBmγelrsgn(l∗) = 2tr

[
relγBT

mPex

]
sgn(l∗) = 2tr

[
elγBT

mPexr
]
sgn(l∗) (17)

By substituting the last terms in (16) and (17) to (15), we rewrite

ėT
x Pex + eT

x P ėx

= −eT
x Qex − 2tr

[
eT

KγBT
mPexxT

]
sgn(l∗) + 2tr

[
elγBT

mPexr
]
sgn(l∗)

(18)

Note from (7) that ėK = K̇ and ėl = l̇ because of constant parameters K∗ and l∗.
Likewise, we employ a matrix trace theory to rewrite the third term of (10) as

tr
[
ėT

KγeK + eT
KγėK + ėT

l γel + eT
l γėl

]
= tr

[
eT

KγėK + eT
KγėK + eT

l γėl + eT
l γėl

]
= 2tr

[
eT

KγėK + eT
l γėl

]
= 2tr

[
eT

KγK̇ + eT
l γl̇

] (19)

By substituting the resulting equations in (18) and (19) to (10), we finally obtain a
derivative of the Lyapunov function as

V̇ = −eT
x Qex − 2tr

[
eT

KγBT
mPexxT

]
sgn(l∗) + 2tr

[
elγBT

mPexr
]
sgn(l∗)

+2tr
[
eT

KγK̇ + eT
l γl̇

] (20)

We know from a Lyapunov stability theory that the derivative function V̇ should be
negative to guarantee asymptotical stability of the error ex for a given time interval
t ∈ [t0, tf ]. Such stable dynamic behavior involves that the state error ex is bounded
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for t ∈ [t0, tf ] and consequently, dynamics of an actual state vector ex matches one of a

reference state vector em. To assure V̇ < 0 in (20), we have a feasible condition as

−2tr
[
eT

KγBT
mPexxT

]
sgn(l∗) + 2tr

[
elγBT

mPexr
]
sgn(l∗) + 2tr

[
eT

KγK̇ + eT
l γl̇

]
= 0

(21)

We obtain solutions of Equation (21) with respect to the parameters K̇ and l̇. Simply,
Equation (21) is divided to two equations as

tr
[
eT

KγK̇
]

= −tr
[
eT

KγBT
mPexxT

]
sgn(l∗), tr

[
eT

l γl̇
]

= −tr
[
elγBT

mPexr
]
sgn(l∗)

(22)
As a result, we have its solutions respectively as

K̇ = BT
mPexxT sgn(l∗), l̇ = −BT

mPexrsgn(l∗) (23)

These parameters adjustments rules are expressed as ordinary differential functions with
respect to a state error vector. We mathematically integrate these differential functions
to update parameter values through a suitable numerical method.

5. Numerical Simulation. We carry out numerical simulation to test reliability of the
proposed control approach. For this simulation experiment, system parameters val-
ues in (1) are selected as follows: L = 1.5[mH], C = 500[µF], RL = 10[Ω], Jm =
0.02[Nm/rad/sec2], TL = 1[Nm], La = 50[mH], Ra = 1[Ω]. And to construct a refer-
ence system model in (2), we let Bm = B, Wm = W , r = 10, and

Am =


0 −1.3 0 0
4 −0.4 0 0
0 0.4 −0.4 −0.4
0 0 100 −0.1

 × 103

A control objective in this simulation is that the rotor velocity of the electric motor
keeps to the reference level, r = 10[rad/sec] under random output voltage from the PV
generator. Particularly, we consider that this random voltage is excited from Gaussian
distribution with 20 voltage mean and unit variance, i.e., vpv ∼ N(20, 1). Under this
simulation topology, we iteratively accomplish the proposed control parameter estimation
algorithm in (22) until the best control performance is achieved in the control point of
view. Figure 2 shows time-histories of the control parameters estimation for the best
control performance. We observe from these curves that the parameters have transient
behaviors until about 0.2sec and since then these keep steady state responses with almost
equilibrium levels. From this simulation result in Figure 2, we obtain its final values as
K = [0.055, 0.012, 0.143, 0.221] and l = 0.125. We apply these parameter values to the
control law in (5) and carry out numerical simulation about dynamics of the system model

Figure 2. Control parameters estimation
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Figure 3. Converter output voltage

Figure 4. Armature current

Figure 5. Rotor velocity

in (1). For a comparative study, an additional simulation by using a conventional state-
feedback control [8] is similarly accomplished under the same simulation environments. As
well known, a state-feedback control is easily constructed for somewhat excellent control
performances in nonlinear systems. Figures 3, 4, and 5 illustrate simulation results from
conventional control and the proposed control methods. Figure 3 shows time-histories
of the converter output voltage for two control methods. We observe that the converter
voltage from a conventional control method has larger overshoots and longer transient
time period than one of the proposed control methods. From Figure 4, the armature
current of the electric motor in a case of the conventional control rarely approaches steady-
state response during a given time period. However, our proposed control system has an
equilibrium current level around 0.02sec with few ripples. Since such ripple is obviously
due to the random output voltage from the PV generator, such dynamic behavior is
quite acceptable. Lastly, Figure 5 plots time-histories of the rotor velocity against the
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two control methods. Similarly, we recognize that dynamic performance of our proposed
control system is superior in that its steady-state response time is rather fast although
there are almost no overshoot behaviors in a transient region for both of the two control
systems. In conclusion, from this comparative simulation study, we prove reliability and
superiority of the proposed control methodology for DC motor control systems with PV
generator based power converters.

6. Conclusions. This paper investigates a boost converter control method for rotor ve-
locity of DC motor systems with PV power excitation by employing Lyapunov stability
theory to realize adaptive robust control performance. We mathematically present adap-
tive parameter estimation algorithm to seek a best parameter value for DC-DC power
converters. Simulation experiment was carried out to test its reliability and superiority
through a comparative study in which a conventional state feedback control method was
applied under the same simulation topology as well. From the simulation results, we
demonstrate that the proposed control system is superior for transient dynamics in that
a maximum overshoot is less and a steady-state arriving time becomes faster than a con-
ventional control method. Moreover, we prove that our control method is outstandingly
robust against random PV output voltage. Future work includes real-time experiments
to demonstrate practicability of the proposed converter control systems excited from PV
power generators.
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