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Abstract. As with the number of emitters in electronic magnetic environment (EME)
increasing, the possibility that multiple signals are received by receiver simultaneously is
higher and higher. When the live time of signals are short, the classical signal separation
technique based on Fourier transform cannot separate each signals in frequency domain
and the interferometer direction finding technique cannot estimate the direction of arrival
(DOA) of signals. Aiming at the DOA estimations that multiple signals impinge on the
array at the same time, an interferometer multiple signals direction finding algorithm
is proposed. With the proposed method, DOA of multiple signals can be obtained with
limited snapshots. Finally, we demonstrate the validity of the algorithm by simulations
and experiments.
Keywords: Convex optimization, Frequency super-resolution, Interferometer direction
finding, DOA, Sparse reconstruction

1. Introduction. Array signal processing using antenna arrays has been successfully
applied to many engineering fields including wireless communications and radar systems
[1, 2, 3]. Many direction finding methods have been developed. Until now, the interfer-
ometer direction finding method has been the most developed method because of its lower
cost and faster DOA estimation speed. It has an important position in the engineering
application field.

In the existing interferometer direction finding (DF) method, we use the instantaneous
frequency measure (IFM) method to estimate the signal frequency firstly, and then ob-
tain the DOA estimation based on the derived frequency estimation [4]. However, the
instantaneous frequency measure method cannot estimate frequencies rightly when there
are multiple signals exiting in the same receiver channel. Therefore, an existing solution
to obtain the DOA estimations of multiple signals is based on the Fourier transform.
Firstly, it estimates the frequency of each signal by the Fourier transform. And then the
DOA estimation of each signal based on the frequency estimation is derived. However,
as we all know, with the existing solution, the frequency resolution of multiple signals is
limited to the snapshot number. When the signal snapshot number is insufficient, this
method is invalid for multiple signals’ DOA estimations. Therefore, in order to obtain
the DOA estimations of multiple signals, we must develop a frequency estimation method
of supper frequency resolution property. Fortunately, as one of the research hotspots in
signal processing field, the compressive sensing (CS) has been applied in DOA estima-
tion, radar imaging and so on [5, 6, 7]. Its core thought is depending on the sparsity
of signal to reconstruct signal with insufficient signal samples, which is suitable to the
frequency estimation of multiple signals. Sparse signal processing has been widely used
in radar imaging [8], communication algorithm developing [9], and DOA estimation [10],
etc. As far as we know, there is not any published literature addressing the multiple
signals’ DOA estimations with limited samples. Aiming at this issue, based on the fact
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that the frequencies of multiple signals are sparse in the whole frequency domain and the
inverse Fourier transform matrix is of the restricted isometric property (RIP), we propose
an interferometer multiple signals direction finding method. Firstly, we calculate the fre-
quency support by sparse reconstruction technology based on the signal time samples and
the inverse Fourier transforms matrix. And then we obtain the values of all frequency
components based on signal samples and Fourier transform matrix. At last, we calculate
the DOA of multiple signals based on each recovered frequency component.

The organization of this paper is as follows. Section 2 is the problem formulation of
multiple signals direction finding with interferometer. Section 3 is the problem solution
of multiple signal interferometer direction finding. The validity of the proposed method
in this paper is addressed in Section 4 by computer simulations. Finally, the conclusion
of the paper and the future work is presented in Section 5. In this paper, the scalar
signal, vector signal and matrix signal are represented by lower case letters, bold lower
case letters and upper bold case letters, respectively. ∥ · ∥1, ∥ · ∥2 and (·)T are vector
ℓ1-norm, vector ℓ2-norm and transpose operation, respectively.

2. Problem Formulation. As shown in Figure 1, two narrowband far field signals
{s1(n), s2(n)} impinge on an array with four sensors which are labeled by 1#, 2#, 3#,
4# and we consider the 1# antenna as the reference. We define {θ1, θ2} as the DOAs
of signals {s1(n), s2(n)}, separately. In this paper, the noise is additive white Gaussian
noise. By assumption, not only are the noise and the incident signals uncorrelated, but
also the noises between receiver channels are uncorrelated. The maximum frequency of
receiver is B. Suppose the array output signals are sampled at the rate of Fs and the
largest sampling number is T . Thus, the received signal of m# sensor at the n-th sample
time can be written as

xm(n) =
2∑

k=1

gm(θk) exp (−j2πdm sin (θk)/λ) sk(n) + em(n), (1)

where the antenna number m = 1, 2, 3, 4, the sampling time n = 1, 2, . . . , T , gm(θk)
denotes the antenna pattern of m# sensor at θk, dm denotes the distance between the
reference antenna and m# antenna and em(n) denotes the additive complex Gaussian
noise of the m# receiver channel. The matrix formulation of (1) can be written as

x(n) = As(n) + e(n), (2)

where
x(n) = [x1(n), x2(n), x3(n), x4(n)]T , (3)

A(θ) =

[
a1,1 a2,1 a3,1 a4,1

a1,2 a2,2 a3,2 a4,2

]T

, (4)

s(n) = [s1(n), s2(n)]T , (5)

am,k = gm(θk) exp (−j2πdm sin (θk)/λ) , (6)

e(n) = [e1(n), e2(n), e3(n), e4(n)]T , (7)

Figure 1. The linear array with 4 antennas
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Based on the above hypothesis, we will address the procedures of how to get the DOAs
of the two incident signals with interferometer direction finding method.

3. Problem Solution of Multiple Signals Direction Finding.

3.1. The super-resolution frequency estimation. In practical setting, we can select
the signal of any receiver channel to calculate the frequency estimations. Without loss of
generality, the signal of 1# receiver channel can be written as

y(n) , [x1(1), x1(2), . . . , x1(T )]T (8)

Split the frequency scoped in [0, B] into Q (Q > T ) frequency bins. The frequency interval
of each frequency bin is B/Q. According to inverse Fourier transform, we can get

y = H · h (9)

In Equation (9), each element in the inverse Fourier matrix can be denoted as

H(t, q) =
1

T
exp

{
j
2π

N
(q − 1)(t − 1)

}
(10)

where t = 1, 2, . . . , T , q = 1, 2, . . . , Q, h ∈ CQ×1 denotes the frequency components of
signal. Because the number of variables is larger than the number of equation, it is
underdetermined, and hence there are infinite solutions. However, the Fourier matrix
has the RIP and the frequency components of multiple signals are limited in the whole
frequency domain, namely the frequency components h ∈ CQ×1 are sparse. The details of
RIP can refer to article [11, 12, 13]. For Equation (10), if the matrix H ∈ CT×Q has the
RIP, we can recover the sparse vector h ∈ CQ×1 with a high probability through searching
for the optimum solution as follows [5, 6, 7],

ĥ = arg min
h

∥h∥1 s.t. y = H · h (Ideal Case) (11)

or
ĥ = arg min

h
∥h∥1 s.t. ∥y − H · h∥2 ≤ η (Noisey Case) (12)

In Equation (12), η is the residual threshold factor, which is determined by noise level.
Obviously, Equation (12) is a convex problem, which can be solved by classical sparse
reconstruction algorism or convex package of software.

We must point out that, in theory, when the number of signal sampled at the rate of
Fs in time domain is T , the frequency resolution is Fs/T with the fast Fourier transform
method, which cannot separate two signals whose frequency interval is smaller than Fs/T .
However, through sparse reconstruction algorithm to estimate frequency, the frequency
resolution is Fs/Q (Q > T ). Therefore, the frequency resolution in the above method is
higher than the one in traditional fast Fourier transform method.

3.2. Solution of multiple signals direction finding. As shown in Figure 1, 1# el-
ement is the reference antenna, the other antennas consist of three baselines with the
reference antenna, and the lengths of the three baselines are d1, d2, d3, separately. Firstly,
it uses the method above to estimate the frequencies of two incident signals, which
denote as f1, f2. And then, we can get the phase differences {φf1,1, φf1,2, φf1,3} and
{φf2,1, φf2,2, φf2,3} of the three baselines. Denote the unambiguous phase differences as
{ϕf1,1, ϕf1,2, ϕf1,3} and {ϕf2,1, ϕf2,2, ϕf2,3}. Without loss of generality, we will give the
method to estimate the DOA of the signal whose frequency is in the following.

Step 1. Choose the baseline whose length is d1 as the base to reverse the ambiguity of
other baselines. So we can get ϕf1,1 = φf1,1.

Step 2. Define dm = kmc/f1, dm = rm,1d1, and then we can get

−km × 2π ≤ ϕf1,m ≤ km × 2π (13)
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ϕ̂f1,m = φf1,m + 2Nmπ, −km ≤ Nm ≤ km, m = 2, 3 (14)

Step 3. Based on the unambiguity phase difference φf1,1 to get estimation ϕf2,m, i.e.,

ϕ̂′
f1,m = rm,1φf1,1 (15)

Step 4. Search for the optimum solution of N̂m by Equation (16),

N̂m = arg min
Nm

∣∣∣ϕ̂f1,m − ϕ̂′
f1,m

∣∣∣ s.t. Nm ∈ {−km,−km + 1, . . . , km − 1, km} (16)

Step 5. According to N̂m, we can get ϕf1,m as follows,

ϕf1,m = φf1,m + 2N̂mπ (17)

Step 6. Based on ϕf1,m to estimate the DOA of signal,

θ1 = arcsin


c
f1

3∑
m=2

ϕf1,m

2π
3∑

m=2

dm

 (18)

In Equation (18), constant c is the speed of light. Similarly, we can get the DOA estimation
of another signal whose frequency is f2 with the above method.

4. Simulation.

4.1. Simulation 1. In this simulation, consider there are two signals incident into array.
The center frequencies of them are 100MHz and 100.7MHz, separately. The bandwidths
of both are all 100kHz. The modulated types of their baseband signal are BPSKs. During
the 6.4µs signal duration, we can get 128 sampling data at the sampling rate of 20MHz.

Under ideal case, the spectrum of the baseband is shown at the upper left subplot
of Figure 2, where the line shown with ‘:’ belongs to the signal whose center frequency
is 100MHz and the line shown with ‘−’ belongs to the signal whose center frequency is
100.7MHz.

As shown at the upper right subplot of Figure 2, it is the spectrum estimation result of
the 128 samples under the circumstance of the signal to noise radio (SNR) being 15dB. In
theory, when the number of signal data sampled at the rate of 20MHz in time domain is
128, the frequency resolution is 156.3kHz. Therefore, when the center frequency interval
is 700kHz, they can be separated.

Figure 2. The baseband spectrum of signals
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As shown at the left lower subplot of Figure 2, it is the spectrum estimation result
of the 64 samples using the Fourier transform method under the circumstance of SNR
being 15dB. In theory, when the number of signal data sampled at the rate of 20MHz in
time domain is 64, the frequency resolution is 312.5kHz. Although the center frequency
interval of both signals is larger than 312.5kHz, using the Fourier transform method
cannot separate the two signals because of the effect of noise.

As shown at the right lower subplot of Figure 2, it is the spectrum estimation result
of the 64 samples using super-resolution frequency estimation method under the circum-
stance of SNR being 15dB. The two signals can be separated. In summary, with the
proposed method, it can increase the spectral resolution.

4.2. Simulation 2. In this simulation, consider there are two signals incident into array.
The 50 DOAs at 50 different incident times of the two signals are shown in the above of
Figure 3 separately. During the 3.2µs signal duration, we can get 64 sampling data at the
sampling rate of 20MHz. Firstly, we can get the frequencies estimation of the two signals
using the method proposed in this paper. And then, we can get the two DOA estimations
according to the frequencies estimation. As shown at the bottom subplot of Figure 3,
they are the root mean squared error (RMSE) curves of DOA estimation at 50 different
DOAs. At each incident time, the RMSE is obtained by 100 Monte Carlo experiments.
Through the simulation results above, we can conclude that the DOAs of multiple signals
can be estimated right with classical interferometer direction finding with the proposed
method in this paper. The angle RMSE is within 2◦.

Figure 3. DOA error versus time

4.3. Simulation 3. In order to compare the advantages of our method with the existing
version proposed in the reference [14]. In this experiment, we also consider the case that
there are two signals incident into array. The 50 DOAs at 50 different incident times of the
two signals are shown in the above of Figure 4 separately. All parameters in simulation
are the same as in experiment 2. The simulation results with 100 Monte Carlo trials are
shown in Figure 4. As it cannot separate multiple signals being with same frequency with
existing method, the DOA estimation error is increased dramatically. According to the
results of simulation 2 and simulation 3, it shows the advantages of the proposed method
than the traditional version in multiple sources scenario.

5. Conclusion. In the paper, focusing on the drawback that the existing interferometer
direction finding method cannot estimate the angle rightly when the incident signals are
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Figure 4. DOA error versus time

more than one, we propose an interferometer DF method with limited sampling data aim-
ing at the angle estimations when multiple signals impinge on the array at the same time.
It can improve the frequency resolution of interferometer multiple signals DF method.
And it applies to the multiple signals DF system with limited sampling data especially.
The validity of conclusions are verified by simulations and experiments. The method
proposed in this paper has a good engineering application value. In future work, we plan
to use this method in the practical engineering.
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